|
|
Absolute deviation, 绝对离差6 j) @2 X' @! ?. g
Absolute number, 绝对数6 f2 G& q5 _, `
Absolute residuals, 绝对残差
( [* k3 I J$ U% t9 ^: g6 i' nAcceleration array, 加速度立体阵1 j+ y+ o( E5 A+ X
Acceleration in an arbitrary direction, 任意方向上的加速度2 T/ _4 z) _0 @! w
Acceleration normal, 法向加速度
4 k) o4 Z4 c9 {) y* B' w! ?Acceleration space dimension, 加速度空间的维数
0 b! \; F4 G6 X, A' BAcceleration tangential, 切向加速度, Y0 e. `' ~0 I" l! Y0 Z) r8 e; }
Acceleration vector, 加速度向量
, u" c4 t6 Q3 L5 x9 mAcceptable hypothesis, 可接受假设% ]9 @5 I$ B2 ?- I# y
Accumulation, 累积
9 ?; q3 v2 h( g7 v2 UAccuracy, 准确度. L- g2 G: p: {9 P0 x/ M
Actual frequency, 实际频数; a/ `- A) i5 G( g7 T
Adaptive estimator, 自适应估计量
0 `3 j o( |4 ?5 b: WAddition, 相加; F- e: | t( l; f5 l1 H
Addition theorem, 加法定理6 v4 p6 g2 t: a `
Additivity, 可加性
- U; L" H! _ [- ]Adjusted rate, 调整率
0 n5 a4 z0 @" r+ I2 v6 JAdjusted value, 校正值
* [; F, Y& A$ oAdmissible error, 容许误差
$ `# l6 a9 j# cAggregation, 聚集性
6 e2 Z( Y2 C; w v& Q8 C/ fAlternative hypothesis, 备择假设
6 Z- e7 y x% b6 H. rAmong groups, 组间
q+ d$ I1 b1 F HAmounts, 总量% K0 Q# f4 `# M$ J! r
Analysis of correlation, 相关分析
l; m* H0 j8 y/ g5 l. \& nAnalysis of covariance, 协方差分析
2 i& I% D! C, N: r# ~( NAnalysis of regression, 回归分析2 s! L# M7 q' i' m2 P1 }7 N2 g
Analysis of time series, 时间序列分析3 r$ V$ t% r6 @4 q/ E0 k
Analysis of variance, 方差分析
6 l6 P$ b( s7 y' DAngular transformation, 角转换
4 w2 g. u |7 `4 e1 L6 G# NANOVA (analysis of variance), 方差分析$ k- z& N* R( d
ANOVA Models, 方差分析模型& B7 u j5 q) h4 L0 g3 N8 p
Arcing, 弧/弧旋
$ O" W7 @3 [% U+ k4 h8 F9 LArcsine transformation, 反正弦变换
+ F( V. i: _8 }3 b) P" JArea under the curve, 曲线面积& a/ I7 c' r9 L% X1 L1 T+ H
AREG , 评估从一个时间点到下一个时间点回归相关时的误差 1 V i( j* S! T
ARIMA, 季节和非季节性单变量模型的极大似然估计
$ k- \& T- P3 ~Arithmetic grid paper, 算术格纸
! f% c1 p: c2 ?. X' vArithmetic mean, 算术平均数
; x* [+ K& ?8 NArrhenius relation, 艾恩尼斯关系
1 |9 C. T3 Y& D* N! e- k6 zAssessing fit, 拟合的评估
4 R; H" ?3 a: [/ u1 `$ q. h; FAssociative laws, 结合律( {. @+ x- T# M8 S6 ~
Asymmetric distribution, 非对称分布
2 u+ k) l" n; N) KAsymptotic bias, 渐近偏倚) \7 z a( S! B8 g/ }" D4 n' X M4 {
Asymptotic efficiency, 渐近效率4 g7 a# I% o8 x
Asymptotic variance, 渐近方差' Q) a7 u1 d1 I( S8 e
Attributable risk, 归因危险度
; A0 A' M1 A/ f4 lAttribute data, 属性资料( U5 q* G4 A7 x2 B' z. Y
Attribution, 属性
, \5 ^$ k0 X dAutocorrelation, 自相关
7 l) G5 e9 g/ J: rAutocorrelation of residuals, 残差的自相关* G% ?3 _- X" l1 m" k# ?* m5 _) z
Average, 平均数& x1 V0 i% I% ]
Average confidence interval length, 平均置信区间长度
& T" {. ]) E, _& f1 W& }Average growth rate, 平均增长率$ t% v* b }2 b5 s% c4 Y5 e
Bar chart, 条形图1 f# T6 L' k5 C6 z0 O* K
Bar graph, 条形图
/ n. F' O Z' A: w# ?Base period, 基期
' B& |3 h1 ^6 y3 }) C6 t0 \. qBayes' theorem , Bayes定理3 d3 f; S( O- E) A+ s
Bell-shaped curve, 钟形曲线4 E3 B' `5 f( m, @; R
Bernoulli distribution, 伯努力分布
5 ?/ ~' X+ `+ C' b: L5 O0 HBest-trim estimator, 最好切尾估计量
; @) Y% w* C: c8 ?$ mBias, 偏性
% q7 `0 [* t4 \* f2 N. `& yBinary logistic regression, 二元逻辑斯蒂回归: {; R$ R. A) T
Binomial distribution, 二项分布 S, V& T+ n; s( R, P8 z# q
Bisquare, 双平方3 p5 t( h# G6 E5 i5 ~3 E
Bivariate Correlate, 二变量相关
9 y- H+ W0 \3 M4 W7 ?; B1 P- i3 QBivariate normal distribution, 双变量正态分布$ u! h% O2 ~4 @, w* ~6 c
Bivariate normal population, 双变量正态总体& m d+ d: K7 ^- K2 u9 t
Biweight interval, 双权区间4 b' K+ x& \7 X# q) n
Biweight M-estimator, 双权M估计量
/ s( A0 {) h s, BBlock, 区组/配伍组! O6 \; \) Q: J" Q8 p1 N
BMDP(Biomedical computer programs), BMDP统计软件包
& o" ~, B7 v7 x- w9 X. O: b! eBoxplots, 箱线图/箱尾图
/ N! D! w2 S9 y* BBreakdown bound, 崩溃界/崩溃点% m, P/ h4 O8 c2 y
Canonical correlation, 典型相关
8 x+ H( m& n) @4 n8 @Caption, 纵标目; d3 P W+ D0 M2 l' Q% [
Case-control study, 病例对照研究2 c! F- f8 {. g% D& s$ S
Categorical variable, 分类变量
3 G# |1 Y, a3 D# p# a) M( a) F: YCatenary, 悬链线8 g" w0 n5 p1 _$ u
Cauchy distribution, 柯西分布
0 d5 i' f, I% }7 pCause-and-effect relationship, 因果关系9 G/ {# y% V& S! r! o+ P+ d
Cell, 单元
. s7 ~/ h) O$ Q' O5 i X4 L1 y+ \Censoring, 终检
. O; r1 ?- _. b( {" W+ O; t/ mCenter of symmetry, 对称中心' h/ _: C% \% i$ _+ ^7 Z
Centering and scaling, 中心化和定标
) W- g8 h' X' NCentral tendency, 集中趋势7 s1 F. W2 Y* X; Q
Central value, 中心值3 x& u2 P2 b8 g$ {/ r
CHAID -χ2 Automatic Interaction Detector, 卡方自动交互检测5 x2 G7 i' d4 v) U- c# x3 f5 p) n
Chance, 机遇1 a A, v8 b# @! y1 ?" g6 o
Chance error, 随机误差
8 t- ]8 i5 v% m- v+ k4 G, r7 S! X5 wChance variable, 随机变量
) Q/ U; ]& |0 G# lCharacteristic equation, 特征方程* K: Q( U3 @# S$ Z* j4 h; o' q, z
Characteristic root, 特征根5 S! k/ x' `& B& R b- S, \
Characteristic vector, 特征向量
, @/ B1 u/ j* ]3 x/ s* ^Chebshev criterion of fit, 拟合的切比雪夫准则# f/ }; |$ I. Z! x5 y
Chernoff faces, 切尔诺夫脸谱图% f: x% G- J5 u3 A9 |' E6 S) i( A
Chi-square test, 卡方检验/χ2检验/ T4 i; ?5 @ y& W
Choleskey decomposition, 乔洛斯基分解
; f- h4 C* Y3 Z4 P FCircle chart, 圆图
# l+ B* L% V' H+ t# q, H4 F& h, o5 L" X9 iClass interval, 组距
i, v/ z4 m! `Class mid-value, 组中值& N6 z# }# {$ N9 w3 U% E
Class upper limit, 组上限
3 b( f* I! B3 T' d. z7 eClassified variable, 分类变量/ E' O3 _. l/ X' K
Cluster analysis, 聚类分析- e+ E, S8 L; t5 G& s/ s
Cluster sampling, 整群抽样
$ S, y t8 R. iCode, 代码
6 {" ~6 I$ ~3 D! g* BCoded data, 编码数据
, f( j4 K2 Y* n# H6 p! HCoding, 编码
f% Q$ X6 ]. ]/ t0 i8 O& KCoefficient of contingency, 列联系数8 U. n* K9 n/ o( u9 |5 B! l( y! d
Coefficient of determination, 决定系数
' h2 [$ U9 d9 ECoefficient of multiple correlation, 多重相关系数
. ~$ B1 T' K1 KCoefficient of partial correlation, 偏相关系数
* ^; y7 T: F$ n) j: S$ jCoefficient of production-moment correlation, 积差相关系数( O* @" h; r# x5 C/ Z5 _
Coefficient of rank correlation, 等级相关系数7 p# K% l7 N1 P0 \; G" F7 o
Coefficient of regression, 回归系数
& |- I* ?3 D4 V& D& JCoefficient of skewness, 偏度系数
7 j9 Y# g" j, f7 h$ MCoefficient of variation, 变异系数) z1 z7 U6 _' r& |0 R, D6 {( J9 x
Cohort study, 队列研究
7 z( v6 }( D9 d4 Y8 A, t rColumn, 列; s/ D0 `4 x/ A3 b) I
Column effect, 列效应' C+ h: m" G/ {& Q c. c
Column factor, 列因素9 v9 t. ], f' c3 A; s; y l
Combination pool, 合并
' q* A7 s* r# ]$ pCombinative table, 组合表9 v% Y) g! B3 K6 ~
Common factor, 共性因子; s# [& b- {, y" i- U7 H+ r. V
Common regression coefficient, 公共回归系数2 u# P/ y# s X) _2 }1 m
Common value, 共同值
4 T) n8 N2 J- |6 }0 M3 k6 pCommon variance, 公共方差5 Z' _; v2 Q6 U- H$ U) n
Common variation, 公共变异7 g3 C# |) m' @8 S4 m: q6 a$ p2 [% M+ P
Communality variance, 共性方差! @% Z {: k5 Q" Y8 T6 `3 q
Comparability, 可比性
+ e A* j. k8 u1 A2 p x: t- yComparison of bathes, 批比较
7 Y0 G8 j! T/ U) d% z- pComparison value, 比较值. M: W( |& o2 _
Compartment model, 分部模型
; r5 r V4 B1 c$ \2 K; t- [Compassion, 伸缩
& P' I; I J2 Q. E0 CComplement of an event, 补事件
. d Q6 P- Z; F0 a' N& CComplete association, 完全正相关; I% _" X$ _% M9 ~1 [/ z/ ], ^
Complete dissociation, 完全不相关) J/ K4 x: v+ m* o; j, I
Complete statistics, 完备统计量
. ~ T& ]2 s# D% X; i: A. i. ]Completely randomized design, 完全随机化设计* D( {; b: P: r7 ~5 Y# x9 O
Composite event, 联合事件
5 w9 e5 F# E8 g& \6 D5 n: \3 dComposite events, 复合事件
/ P, z3 S+ j1 d5 ^5 C1 eConcavity, 凹性5 `( {: L/ B/ H8 N" S/ ~
Conditional expectation, 条件期望
7 }* t- s: X* \Conditional likelihood, 条件似然 Z0 v3 }7 K+ W7 J/ r
Conditional probability, 条件概率: r& ?" u% I! L- o4 v' V
Conditionally linear, 依条件线性
* i7 e. H6 b. a2 I; eConfidence interval, 置信区间# m( {& h9 @0 R1 B ], P$ F# \
Confidence limit, 置信限
1 h! W* ~$ I" aConfidence lower limit, 置信下限
) l3 k# {0 I. F/ _9 {Confidence upper limit, 置信上限
& V8 m" K0 d7 ~$ w1 a, l5 K* q5 ]Confirmatory Factor Analysis , 验证性因子分析2 } v3 j _6 ^1 `' H4 K- Y% n
Confirmatory research, 证实性实验研究
9 l, m! B& D0 v- y- Y/ x. _8 xConfounding factor, 混杂因素
' C9 |. q. Z y; a& x0 qConjoint, 联合分析
/ I0 C1 v7 M1 Q& d, w) h1 WConsistency, 相合性+ C Y+ R6 H, C& ^+ J6 g- u
Consistency check, 一致性检验
% E/ S' V* Z9 HConsistent asymptotically normal estimate, 相合渐近正态估计
4 f' X9 @- O% jConsistent estimate, 相合估计+ b3 ~- H$ y4 l7 J( f$ [
Constrained nonlinear regression, 受约束非线性回归
( Q$ M- `* A- U: YConstraint, 约束
7 }7 v5 p- v5 jContaminated distribution, 污染分布: B* G, B- { e/ \9 F
Contaminated Gausssian, 污染高斯分布; v2 U0 {1 p! Q# P) L2 d+ d
Contaminated normal distribution, 污染正态分布
- v' P0 E( T/ T1 VContamination, 污染
8 l" {" g2 m; q" M6 M9 `) gContamination model, 污染模型
/ K: C2 I) @* g2 i! E4 o% }9 VContingency table, 列联表
2 I q/ z& a2 {! n! lContour, 边界线
1 L2 [ ?3 g1 f8 U: DContribution rate, 贡献率1 ]" s# X# z8 w" o& a, F6 F# l6 I/ J
Control, 对照/ N. Q2 K" G& c
Controlled experiments, 对照实验1 b, \' k' b* k# J1 ^
Conventional depth, 常规深度8 Q H& E9 c9 K4 G3 K" r
Convolution, 卷积
& j* L2 `: M* X7 p/ i" |/ SCorrected factor, 校正因子
% W9 `7 A0 p! H' X1 H3 s8 jCorrected mean, 校正均值
B# V6 }2 Q3 oCorrection coefficient, 校正系数
, l/ i6 O/ i, a+ w% DCorrectness, 正确性 ^" j/ ^4 W8 `: `3 o7 x& m! U$ `
Correlation coefficient, 相关系数 U% D# O& D6 f( a& d# j
Correlation index, 相关指数
y1 X* \) {5 K: B7 ^$ TCorrespondence, 对应, s6 M5 T- b/ H8 p
Counting, 计数$ n4 Z4 D' C% B9 v
Counts, 计数/频数
8 v. F8 M: |2 E; H) G2 M# xCovariance, 协方差; m3 s5 i G0 m6 w9 I
Covariant, 共变 2 k4 J8 \+ C0 d/ y6 o6 U6 {
Cox Regression, Cox回归8 I' T3 j7 V# D) N
Criteria for fitting, 拟合准则
" N4 V# w1 x3 [* L+ F' \Criteria of least squares, 最小二乘准则' e0 J( o; @# @% U! l2 x/ y
Critical ratio, 临界比5 i. W7 H, t; {, q0 o' x
Critical region, 拒绝域
% m% y z8 r! \. A7 n7 l4 t' @3 bCritical value, 临界值0 U* j, i8 K7 }: H+ L
Cross-over design, 交叉设计
* ~2 o3 e& f5 V: h1 E7 c/ f: sCross-section analysis, 横断面分析
& Q- Q1 ~/ y* a' V: UCross-section survey, 横断面调查, R3 {4 H5 L; T- f: p6 P/ J
Crosstabs , 交叉表
, {- q" s7 T7 E4 k0 _$ v$ _Cross-tabulation table, 复合表
3 @! ~+ G% y+ qCube root, 立方根2 [) x& X, e' V+ |8 i7 T. f5 g
Cumulative distribution function, 分布函数" Z. ~9 V5 b2 X. V5 Y/ r* z
Cumulative probability, 累计概率
& D2 V7 W( T1 a' gCurvature, 曲率/弯曲
2 H6 o6 | Y, K1 [* wCurvature, 曲率1 M7 {- w0 ?- L9 Q0 I' D) S4 R
Curve fit , 曲线拟和 ! l3 ~; J: M, L/ `; _5 C
Curve fitting, 曲线拟合
0 o% S6 i$ i, TCurvilinear regression, 曲线回归* o( A% D: R& ]4 ^$ A! I
Curvilinear relation, 曲线关系# c1 V- I$ z7 p/ X; Y
Cut-and-try method, 尝试法
4 A5 j; D% @) h0 |9 h5 z: DCycle, 周期, d4 d0 U m6 Q9 j- P0 |
Cyclist, 周期性
% f: K. M; W! b6 @" FD test, D检验
$ Z. z, Q# d5 `Data acquisition, 资料收集
! C4 |( Y. Z" h/ ?Data bank, 数据库
4 p6 C% R. _# U7 |Data capacity, 数据容量
R9 V, f8 S2 u5 w0 WData deficiencies, 数据缺乏
# G$ X% i: G) {Data handling, 数据处理
: c% D4 _: w0 L4 Q# D/ mData manipulation, 数据处理" x. A( o/ c$ t8 j6 y. `; t, E
Data processing, 数据处理, E5 g j6 F) C) x5 g7 c/ q5 w
Data reduction, 数据缩减
' p1 D0 C+ H9 W: n7 c9 D# eData set, 数据集
/ W7 r% x$ O' P0 g' j: c( ZData sources, 数据来源% a2 g A1 f( R" X, {& k
Data transformation, 数据变换
) _2 t$ j a# X8 v7 p6 kData validity, 数据有效性
( U* C; a7 D! N: S" UData-in, 数据输入
) M/ ]0 ]+ Z+ ~( m7 ]Data-out, 数据输出2 x4 E' p0 Q. c$ r, K9 _
Dead time, 停滞期
% R. y% L3 u- @% m) wDegree of freedom, 自由度* V5 A, |* w6 g) ]- H
Degree of precision, 精密度
9 @0 H% e# i% I+ W6 BDegree of reliability, 可靠性程度
& Q( w: _' |: M$ P1 x8 I9 b& NDegression, 递减
& L" w- v& m+ Q7 NDensity function, 密度函数
* v; {5 X( _ p- j* ADensity of data points, 数据点的密度
* n2 W: I1 ~* }3 w) W& RDependent variable, 应变量/依变量/因变量
: j$ x8 {- o ~. z4 a$ Q* SDependent variable, 因变量
. z9 H) G6 C) A2 @Depth, 深度
0 C9 u/ v1 q; aDerivative matrix, 导数矩阵
4 o% j- t* J5 [- _Derivative-free methods, 无导数方法
! c+ A% t3 \- F1 `/ f2 WDesign, 设计
% h1 z' q& v, j! @Determinacy, 确定性
: T ^5 N8 l3 UDeterminant, 行列式4 `; _7 z/ S0 p& T
Determinant, 决定因素2 t! T" z# _' m- A8 b2 |) r c$ ]0 V9 q
Deviation, 离差
& Q+ ?# v1 U5 mDeviation from average, 离均差
* n& V" E6 o$ {Diagnostic plot, 诊断图" u* |) \% f' N& b4 H
Dichotomous variable, 二分变量) I, J% M6 d8 s2 G) I* [ K
Differential equation, 微分方程" C% C# `9 n4 E5 c3 y: {) B; ~
Direct standardization, 直接标准化法
6 o& u" _5 X( m) K8 M% R! ~% a5 aDiscrete variable, 离散型变量
' N5 w0 R' t1 W9 {" m v7 FDISCRIMINANT, 判断 : R; W4 u7 p* f( E* t$ ?
Discriminant analysis, 判别分析
; Q" A/ T- Q( z3 S6 `Discriminant coefficient, 判别系数5 L" R: B: ?( P6 |( U
Discriminant function, 判别值9 e: [, P/ b7 P% j" N
Dispersion, 散布/分散度& g, k/ E/ G+ }' N: H; G
Disproportional, 不成比例的
* M+ P2 b- i+ aDisproportionate sub-class numbers, 不成比例次级组含量
: `' v/ z* H& [& lDistribution free, 分布无关性/免分布
, z* g/ D8 h7 F. s* g5 V) |Distribution shape, 分布形状
& k& M! y! w+ I5 I s7 {Distribution-free method, 任意分布法
7 o) ^8 q* e$ p+ xDistributive laws, 分配律
5 z) K6 ~! `8 {- MDisturbance, 随机扰动项; D( e8 F6 j2 ~5 A7 Z
Dose response curve, 剂量反应曲线4 [/ \6 V, M. a0 p- L" D. |
Double blind method, 双盲法
& @; e4 p- B% \$ N3 ~# j3 L: ~( sDouble blind trial, 双盲试验
* i5 }$ n. T- E! BDouble exponential distribution, 双指数分布0 y2 k+ v2 Z7 d& `
Double logarithmic, 双对数% l+ Y8 R( \' K7 H
Downward rank, 降秩
$ {7 i: t) g" N, o5 c% TDual-space plot, 对偶空间图
* b: R% E7 g# H' g; a4 w8 KDUD, 无导数方法
0 U6 k. d6 s. l- ODuncan's new multiple range method, 新复极差法/Duncan新法
4 Y0 C* [8 w7 g. G0 t6 REffect, 实验效应
& g9 A6 S. Q' S# [Eigenvalue, 特征值8 h D* j! C1 ^2 X" B$ S k
Eigenvector, 特征向量
% x2 v' U7 X3 L( l/ s- M8 IEllipse, 椭圆
6 i9 _' e$ y; _* S: o: zEmpirical distribution, 经验分布
; l5 y7 ~; ^* P8 i$ TEmpirical probability, 经验概率单位
9 W/ f- f2 y3 f R5 f$ PEnumeration data, 计数资料
4 O& \1 |1 ~& u. j* HEqual sun-class number, 相等次级组含量
8 l9 i! Z+ k! G; xEqually likely, 等可能8 k1 P7 N: W( j+ Y; O
Equivariance, 同变性" N" q5 x# ]. A6 H1 ?/ D9 W5 o
Error, 误差/错误
" r$ Y2 W, n1 `4 w5 vError of estimate, 估计误差9 C" ^. v% F8 }% U& |: h
Error type I, 第一类错误
, l% M7 S8 \$ g/ q4 \: u' G5 H' uError type II, 第二类错误
" [! R. ] H1 J/ l1 }0 G6 M" gEstimand, 被估量. o$ p r4 K9 Z% o" j0 C
Estimated error mean squares, 估计误差均方+ A! G+ I0 S2 J' k1 ^0 y, u6 F
Estimated error sum of squares, 估计误差平方和
/ c# v# O( j- |0 J; OEuclidean distance, 欧式距离
' J2 B1 q$ A6 z$ F# k( c2 _Event, 事件
& k- k* ^+ p' ~2 bEvent, 事件
& Q: |8 Y, [( R8 N' VExceptional data point, 异常数据点' ?* Q$ K) C5 I' l7 o
Expectation plane, 期望平面
0 ?: L. |" ~, M8 ]; J( vExpectation surface, 期望曲面
1 A' y; c! u0 s4 z! z4 tExpected values, 期望值
9 f4 K0 R9 K) v4 k$ l% `, _Experiment, 实验
( T+ j" N$ X, ]" c. B. z/ @, IExperimental sampling, 试验抽样
1 Q n- g& F& w" qExperimental unit, 试验单位$ I& F4 s, A$ s
Explanatory variable, 说明变量8 u' M( K6 n( X" a
Exploratory data analysis, 探索性数据分析
5 N4 Q9 X h5 f# y: `Explore Summarize, 探索-摘要
. K% R3 ^) H: P! r; P. CExponential curve, 指数曲线7 X2 B1 h I2 C
Exponential growth, 指数式增长# S$ ]/ G4 y5 W, v$ s
EXSMOOTH, 指数平滑方法
+ V! K7 H$ p4 W" FExtended fit, 扩充拟合; } G7 m5 z; j$ D- }8 s
Extra parameter, 附加参数$ T7 ?8 v- B0 j* h7 p' g
Extrapolation, 外推法. a1 i! V* k" F( M1 z
Extreme observation, 末端观测值
, e* m* l% n5 V; q! c! u& [* q8 N' TExtremes, 极端值/极值7 k' n. o: E! p0 b2 R
F distribution, F分布5 a+ }6 N4 |3 m6 @& _2 V0 G
F test, F检验. N9 a' z# A l3 ~# }# _9 {. X
Factor, 因素/因子
i. j, u: _9 L+ J L. lFactor analysis, 因子分析
. {( I& {( u) |# rFactor Analysis, 因子分析
8 P: D$ S) y# H+ |. V2 M) i8 QFactor score, 因子得分 ( }7 @- m5 {/ l) r" P4 i, z0 \
Factorial, 阶乘$ h( [+ {$ M% G/ `; T
Factorial design, 析因试验设计
2 p4 H" f; T, S# xFalse negative, 假阴性, N3 X- k8 z- M. Y
False negative error, 假阴性错误
% Z+ e2 Z, [: |3 S& EFamily of distributions, 分布族
- ^! O6 p2 P1 Z9 h( e. n/ T7 M; n$ \" _Family of estimators, 估计量族
7 ~* n1 F0 C* h" {( R! Z- t/ I mFanning, 扇面
' Q r) \1 V2 }2 i9 S2 C4 I( OFatality rate, 病死率2 I0 C* c: w) q9 e0 B6 E$ p& S0 q8 ?
Field investigation, 现场调查
" d. \! p7 }: F1 XField survey, 现场调查1 \9 ] I) o6 O+ E3 O# }2 A
Finite population, 有限总体
! v t; S+ j- v0 g% A7 j+ @1 HFinite-sample, 有限样本3 I3 L B+ Z2 l+ q( F% m$ X
First derivative, 一阶导数
+ y/ h: Z: U" M' a" K9 oFirst principal component, 第一主成分2 a- } { H5 h5 j' F
First quartile, 第一四分位数. u t, d" R/ u' |4 \
Fisher information, 费雪信息量
/ c1 K7 K3 q, Z. \# f9 N( LFitted value, 拟合值
0 x1 L0 J" E0 z2 B0 |Fitting a curve, 曲线拟合
0 d o0 O5 S F: p1 [' l2 ]Fixed base, 定基
7 V" [$ v; g' m7 ^Fluctuation, 随机起伏
; i+ Z/ E" K( E, U+ X% h) q( t. {Forecast, 预测
9 z% `3 X& e: @/ r# a2 \- LFour fold table, 四格表- g. ~6 \0 [0 r! G; x+ u0 g$ m
Fourth, 四分点
! ^/ f& H- u& S# F) \Fraction blow, 左侧比率
& Q, ~- x# Q: B% E# Z6 O% {% t: E) MFractional error, 相对误差, U- ~, h% R/ B2 n8 O
Frequency, 频率
% C/ ?( }9 [/ R! O# X- CFrequency polygon, 频数多边图% C, W! A$ z2 _; j/ O% t6 D
Frontier point, 界限点' _: g1 m- O9 S( g. O
Function relationship, 泛函关系
2 s6 }9 S7 M) n8 ~7 LGamma distribution, 伽玛分布
5 @1 s; @. N7 r. D6 W' vGauss increment, 高斯增量
4 X( G/ [: i* X5 C: w% _Gaussian distribution, 高斯分布/正态分布9 S. \9 ?8 ^ z- |) }1 J" m5 C
Gauss-Newton increment, 高斯-牛顿增量0 L; Z# b& ]! X3 C: O! Z
General census, 全面普查5 O/ r& d$ @: G) A: v' J' B) @
GENLOG (Generalized liner models), 广义线性模型 ]8 ^3 h [$ }! ?
Geometric mean, 几何平均数
& V) q9 W: [0 q* |' d, ZGini's mean difference, 基尼均差
8 g [ `, F7 f- R) \. }6 x+ p/ dGLM (General liner models), 一般线性模型
4 I% }' T% H( GGoodness of fit, 拟和优度/配合度# M5 x; a8 C8 y! C% L- W
Gradient of determinant, 行列式的梯度
6 q, T6 k5 D I; M. j# mGraeco-Latin square, 希腊拉丁方
1 e* W" m, p7 X, l) q1 X" @Grand mean, 总均值
: ^9 b' o6 {, i7 O$ mGross errors, 重大错误
5 ^/ \& v0 E% c! WGross-error sensitivity, 大错敏感度
/ _( J; n/ ?' U9 X, F/ Z' OGroup averages, 分组平均
7 o' N5 s1 b8 r) \3 rGrouped data, 分组资料% Y( `5 R4 T1 `5 D4 P: V% R$ W. r% \
Guessed mean, 假定平均数
+ b" G2 ~1 v% e( C( F' p* o' Q+ pHalf-life, 半衰期+ B% ~( H V7 Q. r7 v, R
Hampel M-estimators, 汉佩尔M估计量
% ?$ p8 T8 I) i- b8 a o& LHappenstance, 偶然事件! G4 T4 J+ }! O
Harmonic mean, 调和均数0 [, _7 `+ y* @, ^
Hazard function, 风险均数
. q8 b' X" f- ]9 F _Hazard rate, 风险率
" h! ?, J- o+ l0 q* X Y( G% qHeading, 标目
* P# h- E8 b4 K: C) x* nHeavy-tailed distribution, 重尾分布
! n! v& ~( v4 qHessian array, 海森立体阵
5 w& z% w: q# j' ]6 g" uHeterogeneity, 不同质* W/ N1 P* C9 z( I3 c% C3 A; ~
Heterogeneity of variance, 方差不齐
% ^2 R a4 o/ E8 w+ k( S- RHierarchical classification, 组内分组7 J7 O9 O9 F6 H' Q! P# X& N
Hierarchical clustering method, 系统聚类法
; Q& k# q& c* z& P d% s% uHigh-leverage point, 高杠杆率点: Y1 P4 |( h& u/ D6 G( T* {0 v( \
HILOGLINEAR, 多维列联表的层次对数线性模型( G+ C0 t4 q. e1 c' k8 G
Hinge, 折叶点
; ~3 C/ l2 s' x! ]Histogram, 直方图7 j! d( m7 p7 ~1 O- b. R
Historical cohort study, 历史性队列研究
. z1 W1 R+ c1 T" Y2 O) y3 ^( I: FHoles, 空洞: k& `; H# d9 M( [; g& W/ J" s
HOMALS, 多重响应分析
$ u3 B( Q+ n% M9 v" Q5 R" q% DHomogeneity of variance, 方差齐性2 y; J- r$ d/ K; W2 j5 C9 r6 {
Homogeneity test, 齐性检验
* R# _2 O! o+ E* OHuber M-estimators, 休伯M估计量
: o# ^. |4 B, B! A' W/ u& r+ _5 RHyperbola, 双曲线9 e2 k* z$ k, b. ~. x
Hypothesis testing, 假设检验. u/ B. [. H; }6 r3 E6 }
Hypothetical universe, 假设总体: D3 e& g' c5 K5 J$ T
Impossible event, 不可能事件
4 q' O ~- d8 V9 I& q& ]1 ~5 KIndependence, 独立性
# U( s. P; Y3 ~, G3 ?Independent variable, 自变量
) ?& `* y4 h; a+ F# |& r( ^9 UIndex, 指标/指数 R& v+ s$ M2 ^" j1 Y# G
Indirect standardization, 间接标准化法4 h# k* ~$ b* W' j$ t
Individual, 个体
" u- X2 s; ~5 |. r8 iInference band, 推断带# T! Q) Z' A+ s$ q1 l" ^7 G" n6 k l
Infinite population, 无限总体. ?7 w- F2 M) M9 s( w# T+ u5 e6 L
Infinitely great, 无穷大' z7 B8 W L/ l
Infinitely small, 无穷小2 ~1 N- a- h9 C
Influence curve, 影响曲线* K& _, w% \+ B; E1 C
Information capacity, 信息容量( y3 y: L C# {1 K) w
Initial condition, 初始条件3 I( r4 L1 [# | p7 m+ d
Initial estimate, 初始估计值" Z! c) F) l' L8 a" J& I
Initial level, 最初水平+ H1 D9 T# d! I4 H3 G7 |- }: |: @
Interaction, 交互作用
2 \6 e; x' Y7 O* q5 G4 v! UInteraction terms, 交互作用项
; h* \7 w3 D$ f9 e* wIntercept, 截距& [* A7 |$ f/ n, m6 C
Interpolation, 内插法
- h3 G# n9 ~: I& ]1 UInterquartile range, 四分位距
5 i" G6 {! b* O: w. V( Y- E# A9 UInterval estimation, 区间估计
" w8 T0 [8 q8 [0 L% XIntervals of equal probability, 等概率区间
4 ~& S' ~$ z! [3 B& mIntrinsic curvature, 固有曲率' G4 q% R3 j3 A' O) F( O+ a
Invariance, 不变性
$ r0 j% n: w- d0 C! ~Inverse matrix, 逆矩阵
$ G4 h7 [5 K7 W! J0 u( K+ x0 HInverse probability, 逆概率
1 k2 O$ A: u( d+ h* k+ \7 LInverse sine transformation, 反正弦变换
/ E2 D: b q+ T+ z! @/ MIteration, 迭代
: c& }! c& e9 M/ ~5 r, oJacobian determinant, 雅可比行列式0 n$ v& v- ?+ y9 O4 J, u
Joint distribution function, 分布函数
( }3 S0 C2 h& i" ~; xJoint probability, 联合概率* @' q5 e E2 f, s( S4 C0 \
Joint probability distribution, 联合概率分布# I* c: u* q' S1 v
K means method, 逐步聚类法
, p" ?' |6 G: \Kaplan-Meier, 评估事件的时间长度 r7 \1 T, f i3 j# v1 |3 l
Kaplan-Merier chart, Kaplan-Merier图/ ~" _+ Z- U4 G, u2 O
Kendall's rank correlation, Kendall等级相关! F4 F3 x6 {& h* _* `, |& u8 B
Kinetic, 动力学
+ Y- V2 |9 ^: L! s9 y5 S" }- P% @Kolmogorov-Smirnove test, 柯尔莫哥洛夫-斯米尔诺夫检验. o- q% g3 c% b" U' Y. b
Kruskal and Wallis test, Kruskal及Wallis检验/多样本的秩和检验/H检验2 k: Q6 u9 P5 `5 i9 x
Kurtosis, 峰度
( h( I2 i/ X6 j* sLack of fit, 失拟- i' {2 F' x+ U( [* B4 V
Ladder of powers, 幂阶梯
. q1 C4 I& \6 [( yLag, 滞后' G* x3 x3 K v: k4 @4 o4 O
Large sample, 大样本8 e4 H5 I- S1 e$ f
Large sample test, 大样本检验9 o5 H% D1 W" d k
Latin square, 拉丁方! ~$ g4 y/ N- U
Latin square design, 拉丁方设计) O* j! t% ? r) |8 ]$ N
Leakage, 泄漏8 k" w, Y5 s; w" |- C
Least favorable configuration, 最不利构形
: f: V% w* H/ O5 |. S9 Q0 L" y! M, S: fLeast favorable distribution, 最不利分布; \9 X9 f2 p: D: P! C; R5 Q4 e
Least significant difference, 最小显著差法
9 J; S1 @" |% A1 ^+ L* m' K. c/ lLeast square method, 最小二乘法
0 _: M. W* n0 P, V" N3 Z5 hLeast-absolute-residuals estimates, 最小绝对残差估计
3 N- F2 s* e. d- m) rLeast-absolute-residuals fit, 最小绝对残差拟合. h. d5 t, j8 X
Least-absolute-residuals line, 最小绝对残差线
* U' o! w/ B0 T, U+ DLegend, 图例
( n" f) S' L% d2 B" |L-estimator, L估计量
6 c; ~6 a/ ~( DL-estimator of location, 位置L估计量 G- R/ L( z9 q7 V- l Q2 c
L-estimator of scale, 尺度L估计量
: I3 n7 J' ?% l3 z+ z9 Y& T) mLevel, 水平" D/ d* Y. d1 R3 R+ v/ S0 g
Life expectance, 预期期望寿命6 S* a8 y+ l& z# x0 N) @
Life table, 寿命表; z& o: G% a3 h- ^7 u. P! {
Life table method, 生命表法
4 e9 P( L! I' [( e; k) {1 Y' ELight-tailed distribution, 轻尾分布
3 o# B6 ` n! `3 @6 V9 GLikelihood function, 似然函数7 {1 C) R4 d( D+ n. g
Likelihood ratio, 似然比2 f. x, `; `; G. o1 H' y% J
line graph, 线图0 [$ a$ ^( W/ Q; j# r* X% P
Linear correlation, 直线相关
5 s T e9 Q. x% {Linear equation, 线性方程
6 t E6 m; s# w% i9 }Linear programming, 线性规划
( p& |# K: y' s5 v9 BLinear regression, 直线回归
N" y1 U9 ~& F/ NLinear Regression, 线性回归
4 R, e5 Q2 o5 v5 V6 w( I3 A: z' B+ R- dLinear trend, 线性趋势
+ h2 b! m6 V' K9 V) _4 K: [Loading, 载荷 1 `+ n( ?- J1 A8 k
Location and scale equivariance, 位置尺度同变性" v, h" z$ _% J/ S' K# W* W, X
Location equivariance, 位置同变性
% W3 g+ y: D$ j' VLocation invariance, 位置不变性2 C: t1 q( J) J! O7 ^6 [
Location scale family, 位置尺度族9 Z$ n. H0 s; ^% U
Log rank test, 时序检验
. l; S* ]( ]: R% m: O1 aLogarithmic curve, 对数曲线
6 x. Z% \4 X2 j5 _8 yLogarithmic normal distribution, 对数正态分布( ^* p3 L& \; r" e6 \
Logarithmic scale, 对数尺度' K( ]2 |- w; i# z3 h
Logarithmic transformation, 对数变换
7 e% N# v Q' r: e( Z: _) a8 g7 oLogic check, 逻辑检查
" y) n* T9 B+ y- J* N, z) P* E) }Logistic distribution, 逻辑斯特分布; ]& F# |. {; L0 h. s: u0 v
Logit transformation, Logit转换
7 y# a+ o, C- [$ ^% S1 TLOGLINEAR, 多维列联表通用模型 + F/ R7 V$ j4 N( Y+ N
Lognormal distribution, 对数正态分布
1 P0 M8 P% L! h; c+ p: ?Lost function, 损失函数7 D, X8 }/ X$ s9 S) K2 v! Z
Low correlation, 低度相关( b w' u/ n! z0 y
Lower limit, 下限! P9 F+ X! J* ~4 `; N' {/ Q% F
Lowest-attained variance, 最小可达方差2 x: K6 G& I/ A3 E8 F7 y* A; v: I
LSD, 最小显著差法的简称$ ~8 o$ ]+ b' U( B) v0 K2 x) O& R5 I
Lurking variable, 潜在变量! @0 H; Y p4 ^8 l/ y( R9 k0 e& ]
Main effect, 主效应) U6 m/ ~( ?* D8 B% p4 {
Major heading, 主辞标目8 Q1 b2 j9 B+ Q3 e6 n. ^
Marginal density function, 边缘密度函数
1 H3 r0 q8 r" Q' V8 ?0 t: \Marginal probability, 边缘概率. k. R$ U' P# i) w; M
Marginal probability distribution, 边缘概率分布
5 l3 s0 B9 b% g2 v( I$ n; \Matched data, 配对资料; M, D* E0 x2 v& N# l
Matched distribution, 匹配过分布 M) i6 e2 ]& P
Matching of distribution, 分布的匹配" o m9 q. ~# k9 d1 q: ]* q
Matching of transformation, 变换的匹配
, b% ]! l' f$ @ g/ bMathematical expectation, 数学期望
/ S7 v+ b) B1 u/ _' O& dMathematical model, 数学模型7 G% G$ d c3 p5 F p- [4 ^, D3 c
Maximum L-estimator, 极大极小L 估计量
( e& r" ~- j* H+ w% ?$ m' S6 y3 o& dMaximum likelihood method, 最大似然法
3 d _( f0 n5 K% F3 CMean, 均数
8 {3 @- L# u F! S6 s1 ?$ _) F2 LMean squares between groups, 组间均方
$ @2 Y6 a. p+ F0 W7 [+ q9 j% U1 EMean squares within group, 组内均方0 V. I! }& ^# D
Means (Compare means), 均值-均值比较2 M! e+ S6 t& l; [- M- P0 y
Median, 中位数
3 m2 n: W; u9 |" h9 C2 b' q# FMedian effective dose, 半数效量 i f) I7 s9 @$ |9 z+ f0 K e3 G
Median lethal dose, 半数致死量
7 s4 m/ `9 m9 \7 Y8 n7 D( z# RMedian polish, 中位数平滑$ M! K# J# Y% i. }" q
Median test, 中位数检验
8 i1 v% e4 `5 {; r' MMinimal sufficient statistic, 最小充分统计量
+ c3 g2 c* Z% sMinimum distance estimation, 最小距离估计
3 h2 [/ ~2 n' o) KMinimum effective dose, 最小有效量
8 h' Q4 e2 ^6 M9 n/ s W6 Z( jMinimum lethal dose, 最小致死量
1 O0 P' V H; _5 K2 SMinimum variance estimator, 最小方差估计量# R8 T% S6 j. g4 x: H
MINITAB, 统计软件包
- F# y5 \2 U4 o2 q& `9 y$ {" M% z1 PMinor heading, 宾词标目, W5 C3 K9 @, T" C2 w
Missing data, 缺失值
, }5 _+ R* o) o% c. {) dModel specification, 模型的确定8 [ C4 I9 V7 q; Q) ?
Modeling Statistics , 模型统计8 ^7 L3 H" e% s* v, C
Models for outliers, 离群值模型6 c5 |3 z [! f$ D; m
Modifying the model, 模型的修正! u( G6 V$ ^9 E( V" a8 P
Modulus of continuity, 连续性模9 Y' M- T/ t# T1 z" F
Morbidity, 发病率 - }& L! R( {7 T: z3 y- d. {- C6 L
Most favorable configuration, 最有利构形
9 D* g% Z' T2 D+ q( `Multidimensional Scaling (ASCAL), 多维尺度/多维标度
) L( l0 e. U# r. W/ _4 B5 vMultinomial Logistic Regression , 多项逻辑斯蒂回归
+ ?7 j g0 X: f: E$ ~3 vMultiple comparison, 多重比较& s9 D& z) c( L% m
Multiple correlation , 复相关9 \$ E& `: a, x- K: n* @
Multiple covariance, 多元协方差
5 n% T6 R9 ^+ l! IMultiple linear regression, 多元线性回归
+ ]% B7 V. p, jMultiple response , 多重选项
+ }# L% k$ O! ~: |( h4 ?3 ]Multiple solutions, 多解- c: P0 p: f$ _( n# y
Multiplication theorem, 乘法定理
+ w2 s) G% K, x9 kMultiresponse, 多元响应/ ?$ O( U% o; |) E% r7 r0 T( M4 L
Multi-stage sampling, 多阶段抽样
3 N8 @" c' M! R2 }Multivariate T distribution, 多元T分布
7 `. Y: C5 Y# nMutual exclusive, 互不相容
0 i4 h8 I# X. K, ~6 H( dMutual independence, 互相独立
' ^% l2 Q) U ^. h9 M6 ?Natural boundary, 自然边界7 W5 d% b. d8 v# r% X$ q( ?, H0 L
Natural dead, 自然死亡% q9 I9 X+ H2 g4 q4 ~0 d" J6 e0 p
Natural zero, 自然零
! T5 m5 L& `0 m+ F& aNegative correlation, 负相关& v1 Z8 M B9 G) Q' y S) J
Negative linear correlation, 负线性相关" y/ T5 A/ A7 \: d& G t8 }5 @
Negatively skewed, 负偏
) T3 |$ e1 }2 A& E xNewman-Keuls method, q检验
6 [$ A- T8 R7 S4 ?6 L* `! y. oNK method, q检验- o8 [! k- r( z# ]( {
No statistical significance, 无统计意义
- ^. M- r7 W- C0 o8 n" iNominal variable, 名义变量
; M! V: z4 ~: @Nonconstancy of variability, 变异的非定常性
0 i8 B& k! A$ C, L, @2 NNonlinear regression, 非线性相关$ p0 B: L6 ]- _) [% Y, U$ f6 y% J
Nonparametric statistics, 非参数统计, ]- o/ I. n% d+ z
Nonparametric test, 非参数检验
$ v9 K. l1 R6 R' VNonparametric tests, 非参数检验
; |7 [6 g; F6 Y* b# [Normal deviate, 正态离差
5 E _; u9 d( t! n! kNormal distribution, 正态分布8 k. A0 ?- T& C" ]% N' x$ D+ Y. k
Normal equation, 正规方程组& X% Y. u5 ^& c+ ^
Normal ranges, 正常范围* H- m& o! V: W4 @7 u
Normal value, 正常值* U. s) _$ P5 v( \
Nuisance parameter, 多余参数/讨厌参数& d' \" h [7 `* s$ \
Null hypothesis, 无效假设 % e; q5 ]" @+ f( ~
Numerical variable, 数值变量
, R, B7 y/ w; L" hObjective function, 目标函数5 O5 D% P7 x+ c) M6 D0 x9 G" T
Observation unit, 观察单位 I% v* X9 w9 h3 a5 F( a
Observed value, 观察值
# p6 F; M& Z5 kOne sided test, 单侧检验, K4 _. u4 E# v1 s) p7 O. z/ e
One-way analysis of variance, 单因素方差分析2 b- N$ m6 z+ \4 e/ Y: o2 I' D/ D
Oneway ANOVA , 单因素方差分析& t5 o3 P- P' t2 k! Q; B
Open sequential trial, 开放型序贯设计% G3 J; x8 {% p) J/ M2 |1 C
Optrim, 优切尾, ]8 G& D) j }0 b
Optrim efficiency, 优切尾效率1 m/ I- u5 L `" |! g! o
Order statistics, 顺序统计量, s! V7 P- L% A
Ordered categories, 有序分类
. m0 t9 N, ~4 Q# x! zOrdinal logistic regression , 序数逻辑斯蒂回归: C0 h& p1 Y0 l3 b5 `, O7 s3 t
Ordinal variable, 有序变量5 Y: q! k5 l0 e3 E& p; Y# _( Q
Orthogonal basis, 正交基( ^2 A, i8 x' c5 X
Orthogonal design, 正交试验设计/ G, g2 E) D; j, w4 u2 S
Orthogonality conditions, 正交条件& Y- O2 g9 T6 q2 I; F
ORTHOPLAN, 正交设计 , a. C0 N) ]3 l. z
Outlier cutoffs, 离群值截断点4 ]7 e- z, v- K, T
Outliers, 极端值( y5 Z- ^+ w% Q1 q; w! `
OVERALS , 多组变量的非线性正规相关
: F1 p3 q2 D2 uOvershoot, 迭代过度
* ]( C) V* H5 z8 U" ?) _8 s/ YPaired design, 配对设计
2 x5 t2 l9 a7 v% D; V" OPaired sample, 配对样本$ ]% l! S# F* ?
Pairwise slopes, 成对斜率
& H; L; V) K: B8 }4 KParabola, 抛物线
! a' c' C2 h* |! @8 b) DParallel tests, 平行试验9 t3 u1 M1 A$ e3 b8 C- |+ @' M
Parameter, 参数, {. p u7 U* @3 \1 N+ }2 k' l o
Parametric statistics, 参数统计
& y4 |3 F9 K$ `* m* K4 i* I; y. xParametric test, 参数检验1 v, g S2 t6 x1 ~% }8 b* i- z
Partial correlation, 偏相关 T4 S" u! T% G3 s. t$ h
Partial regression, 偏回归- u* Q7 j o. M5 h+ ~
Partial sorting, 偏排序7 Y" L# Z8 Q1 u
Partials residuals, 偏残差
- e0 i+ m8 Z$ O% @Pattern, 模式
! ^. Z- E- ~( gPearson curves, 皮尔逊曲线
0 s% l3 n) J. R8 BPeeling, 退层
7 P3 H+ `3 H4 l6 T# w. g/ E; EPercent bar graph, 百分条形图& {; O0 W+ {' t" w U _- r- t" m9 q
Percentage, 百分比
+ D q& j, i, W' G: z$ kPercentile, 百分位数: _3 O# d0 Z4 s, u- z6 ?0 D
Percentile curves, 百分位曲线: T) Z5 F* {& ^" L) I- V. c' j
Periodicity, 周期性
& ~9 k* b2 k" v+ B+ b1 [7 e3 SPermutation, 排列. b' T% S* N) h& K3 n/ h
P-estimator, P估计量
% _, b/ B" I: R9 g( o" V2 XPie graph, 饼图! ^* _$ H/ _ K8 s
Pitman estimator, 皮特曼估计量
: V" H n' `, c* m3 NPivot, 枢轴量. G" |8 j7 `* N4 e' a G7 {
Planar, 平坦
( O+ U2 l) t4 T% R1 S5 V. w4 v: SPlanar assumption, 平面的假设
' l ?9 V, _+ }5 `1 j/ A7 `8 c- {PLANCARDS, 生成试验的计划卡' B& c1 k' Z, e& ?( e, B7 B
Point estimation, 点估计
. \6 r$ F& H& W1 y$ F* z6 p" i# o) ?Poisson distribution, 泊松分布: z) R# H( ]4 k8 [' A
Polishing, 平滑: r+ y \; w8 W2 Z8 s7 q( Q1 C
Polled standard deviation, 合并标准差
( n' A8 \4 x) W$ Y9 EPolled variance, 合并方差) @- w3 j) E8 w3 ?6 O/ u
Polygon, 多边图
" l/ @4 o' D$ L& ^7 `Polynomial, 多项式+ B1 s' Y) p) |6 R+ G+ u2 H t
Polynomial curve, 多项式曲线
- [4 n: o, i4 r1 P% IPopulation, 总体$ k! V3 e, ~/ v# i
Population attributable risk, 人群归因危险度( c+ o$ F _' J' B: \- Y
Positive correlation, 正相关
0 e4 U- m% `& F6 A# Z rPositively skewed, 正偏9 N' k1 {9 }3 f0 E$ D
Posterior distribution, 后验分布
4 E. W5 _4 q gPower of a test, 检验效能
4 C4 T2 N: r6 ^8 u% A' p. VPrecision, 精密度/ \/ ^6 k: g% d: o) w. a$ U
Predicted value, 预测值* \6 y8 \& Q" m3 K4 V
Preliminary analysis, 预备性分析
- W; i9 i; S( d/ E; BPrincipal component analysis, 主成分分析
) T& |# ]- {, G- {9 }0 nPrior distribution, 先验分布
8 e4 r8 ]" R; \6 ?% _3 ]Prior probability, 先验概率
0 ]8 o7 `* i2 u; X8 D& g. _Probabilistic model, 概率模型% Z$ C1 F q% E5 G- z
probability, 概率
/ @# m f8 m, v5 `9 R" N+ D0 ], L1 qProbability density, 概率密度, c5 u6 x$ |% z! w
Product moment, 乘积矩/协方差
5 f% P6 X% e( {$ I) aProfile trace, 截面迹图
2 j# v9 ?. Z/ f/ H0 IProportion, 比/构成比
! U Y0 u' Z3 cProportion allocation in stratified random sampling, 按比例分层随机抽样
8 O) f$ I6 M9 a! V7 rProportionate, 成比例
2 z5 t) b v7 v9 ]8 xProportionate sub-class numbers, 成比例次级组含量
/ X8 e/ G+ q2 MProspective study, 前瞻性调查
( c$ y! j- ~( aProximities, 亲近性
8 i. Z5 Q; `1 s8 w' [2 y" [Pseudo F test, 近似F检验& b- v+ l! C5 f7 O
Pseudo model, 近似模型
- J T2 e# I, F" L4 bPseudosigma, 伪标准差. {) ^2 S: I. K9 ?0 ^/ r- e
Purposive sampling, 有目的抽样- V2 Y- V5 N- ^# `( f3 Q0 w
QR decomposition, QR分解
. M) S" m4 c) N$ XQuadratic approximation, 二次近似4 w6 q9 R8 R; l" K {6 P2 b
Qualitative classification, 属性分类
+ Y( U' M* Y6 K) G: |% B c) [Qualitative method, 定性方法
6 y( \6 F* _) v& N# b4 J' n5 S) Y' zQuantile-quantile plot, 分位数-分位数图/Q-Q图2 `4 i# k$ p: e$ r3 G
Quantitative analysis, 定量分析0 [, D% Z& ]6 Q0 } n! T7 d
Quartile, 四分位数
$ `$ T3 w( H2 uQuick Cluster, 快速聚类
2 W8 a+ y" k2 R/ Q- q( M( Y* H. rRadix sort, 基数排序7 K5 {( c6 i* r/ S# `
Random allocation, 随机化分组/ S4 A0 B/ N5 H* t( e+ V8 L3 F7 b/ n/ ^
Random blocks design, 随机区组设计
9 e' l: ^$ ]5 b |6 v) j* JRandom event, 随机事件' A' S s* ?5 Q
Randomization, 随机化9 n6 V% {8 d& \, `
Range, 极差/全距
9 [. N4 V; l/ A) k' m1 H+ KRank correlation, 等级相关5 j: f. j( f( R3 d! e- k5 ]8 [8 ~
Rank sum test, 秩和检验
4 q" y9 ` |! ~8 u9 ]Rank test, 秩检验
+ ?# ~8 { x: F! ORanked data, 等级资料, M" N3 Q ]4 p/ i* [& t" \
Rate, 比率9 O# E, \5 E8 s" q g4 _; @1 V
Ratio, 比例5 z; G( X: s8 {, l: S
Raw data, 原始资料
+ w7 [6 `) J( H- u( N# D1 ORaw residual, 原始残差
8 _. f( e2 a: _! r! fRayleigh's test, 雷氏检验
! k4 V7 g" O1 z* g+ G0 k# `' ?Rayleigh's Z, 雷氏Z值
! j% _/ ~9 U; |" VReciprocal, 倒数
3 w/ m+ S( h9 a0 t" LReciprocal transformation, 倒数变换
5 x: @) K# A/ x9 vRecording, 记录7 e B8 T! b6 Q1 A7 q/ q
Redescending estimators, 回降估计量
' Z0 C, _) K5 u B6 }- s6 D; P. tReducing dimensions, 降维
3 n. f. r; _% q& N# V, URe-expression, 重新表达
8 X/ P6 n# f i. R/ h1 a8 L5 Z9 kReference set, 标准组* E0 `) t7 v; v+ x! i5 x/ L& M( D
Region of acceptance, 接受域7 l6 I; U' v: x- q. x8 e8 F
Regression coefficient, 回归系数" V' {7 z0 O2 i: s2 I. q
Regression sum of square, 回归平方和8 O( R7 o0 e0 C; J) N1 p
Rejection point, 拒绝点; L9 K5 D% E4 W" N. W6 F
Relative dispersion, 相对离散度' j, A: n0 [7 e+ k
Relative number, 相对数; H% t, |( Y0 o; r2 c4 ?0 _, V
Reliability, 可靠性
9 O- x. V7 z* a- i7 p% xReparametrization, 重新设置参数
" r' `% p+ S" M& IReplication, 重复6 ~& Q" C9 o: u" V/ m$ S
Report Summaries, 报告摘要
6 ?8 A3 `# m6 j1 C7 eResidual sum of square, 剩余平方和+ J" x! W2 x$ R* f% r6 Z" Y
Resistance, 耐抗性
8 `, |) X# d6 R" u5 d+ S) N* x5 KResistant line, 耐抗线1 }( K3 g6 K; C
Resistant technique, 耐抗技术( S( |& h9 {1 I
R-estimator of location, 位置R估计量
/ p5 v. D3 G, c) T. R& K7 k: GR-estimator of scale, 尺度R估计量0 |: D: L6 y( @! w8 r
Retrospective study, 回顾性调查 g1 } [6 q4 l2 L9 {
Ridge trace, 岭迹0 w+ t8 U8 b: L3 V
Ridit analysis, Ridit分析
4 @. t/ h/ y: P( |7 l1 r4 iRotation, 旋转4 B) ^ y% S6 }: [3 {* Z6 r
Rounding, 舍入, T7 c% C" D. D; x
Row, 行
e% t) a+ |* P2 @& r" M/ URow effects, 行效应
9 f( s# D' I4 f. B' x" X1 GRow factor, 行因素
3 O9 x% ?) R( `5 t& K$ r: y" pRXC table, RXC表
8 q; U2 ], S) [! t% |, tSample, 样本
9 k. y5 ]# T! d/ v! i- Z8 WSample regression coefficient, 样本回归系数 q, D0 t* c7 w9 [! B/ j; Q
Sample size, 样本量
! g" |, m/ s' e3 o1 P% z4 qSample standard deviation, 样本标准差
, g' ~- C/ c5 _Sampling error, 抽样误差; Y7 `& u V8 E0 U5 h
SAS(Statistical analysis system ), SAS统计软件包
- ?5 ]$ ?& N0 S- _4 x- w. J2 W' NScale, 尺度/量表
5 Q$ ~7 G4 r* S2 V) U* d8 d8 N7 k0 XScatter diagram, 散点图
. R: b5 C& o8 r" F. g$ m6 t& USchematic plot, 示意图/简图
3 f# N/ _* h6 j$ JScore test, 计分检验
* e- j$ a: P( j" {Screening, 筛检
8 ~$ m# O; F5 FSEASON, 季节分析 % `# w' l5 ~. J# o" Q! I$ s
Second derivative, 二阶导数
& u% d8 N5 [! b$ l5 P( `Second principal component, 第二主成分- f+ U1 V4 M: A3 i: Z
SEM (Structural equation modeling), 结构化方程模型
/ y) d1 M8 d2 l- n. s2 dSemi-logarithmic graph, 半对数图
1 W8 P% N3 H' B; ~8 X0 g. ASemi-logarithmic paper, 半对数格纸
" |1 c# o. I, k* l4 aSensitivity curve, 敏感度曲线
( ?1 L! K! ]( X7 _Sequential analysis, 贯序分析& ?* X$ \4 k4 W8 P) T3 s' ]
Sequential data set, 顺序数据集) H/ b. F% a& R
Sequential design, 贯序设计
8 L. F4 ]9 C$ A( D/ r) a+ H! eSequential method, 贯序法0 ?2 |. S3 j; h% O( }% n5 A
Sequential test, 贯序检验法
( v! ]3 u3 q/ t2 U. aSerial tests, 系列试验8 d. {7 K5 y; e6 I3 k/ i& M
Short-cut method, 简捷法 ) e, A. e+ N9 x& [$ |. I' O4 ^
Sigmoid curve, S形曲线
' A0 {$ @ _; N% m" qSign function, 正负号函数0 E8 ?6 b' V% K. Z& E# |% c
Sign test, 符号检验
! b6 x% R C/ eSigned rank, 符号秩
, x1 }0 z6 n; a2 B s) d2 ?Significance test, 显著性检验; }1 R m% E- V. [4 c" M8 p
Significant figure, 有效数字 N3 w& c; e5 i- I$ k( ~; G
Simple cluster sampling, 简单整群抽样' J7 p# h! H4 R' s2 n3 |
Simple correlation, 简单相关. c% `& G; J, d1 L0 T: P$ O, S
Simple random sampling, 简单随机抽样/ k. e4 I0 D! ]3 v) }) j6 h
Simple regression, 简单回归" i: {) {- l1 o% ]% q
simple table, 简单表
* i l. G% i. `4 j2 jSine estimator, 正弦估计量& d% v) K' V- t2 h9 @4 i, a
Single-valued estimate, 单值估计
9 L0 \( @1 H* oSingular matrix, 奇异矩阵
/ E' ~7 r6 U% s/ RSkewed distribution, 偏斜分布
3 G" n$ K1 T* k& _9 r* c1 LSkewness, 偏度
5 h$ F$ T% G* S5 F8 j* `Slash distribution, 斜线分布
, X( `4 s! L4 e3 h2 n; N4 VSlope, 斜率
' Z; d4 i% s! R8 f: kSmirnov test, 斯米尔诺夫检验& r) ]8 \# e. }+ ~* @
Source of variation, 变异来源
2 Y! [( e: T) ^5 [( F3 uSpearman rank correlation, 斯皮尔曼等级相关& s x0 E6 D# }
Specific factor, 特殊因子* B4 f0 z0 _$ W
Specific factor variance, 特殊因子方差1 k; l8 c) i0 J, ?. \& O1 U
Spectra , 频谱( W1 o. x2 I# Z, Z# D) f" Y; [; h+ X
Spherical distribution, 球型正态分布
( N6 U! m+ [1 F( }8 ESpread, 展布( _6 u/ w- w4 \: q
SPSS(Statistical package for the social science), SPSS统计软件包0 i8 c0 f$ ?% q3 d# c3 U
Spurious correlation, 假性相关
0 ^1 k6 A8 \7 x. L1 w5 O5 k5 fSquare root transformation, 平方根变换9 Q5 s/ d+ K5 g3 o+ ?# N
Stabilizing variance, 稳定方差
) [" B7 ^7 ?& ]. Y; VStandard deviation, 标准差
3 B+ A. i( E$ T' i% {$ oStandard error, 标准误# N% s* [5 d' d" r
Standard error of difference, 差别的标准误* Y+ h' L/ `9 @ J# b- @
Standard error of estimate, 标准估计误差$ |% r. O' L1 ~" G$ B, ~9 e: b6 _
Standard error of rate, 率的标准误
7 s- K- U1 _+ O4 }" pStandard normal distribution, 标准正态分布3 c: N6 d( S. P' n9 k
Standardization, 标准化
4 _" z2 X2 S7 x- T$ ]% p7 dStarting value, 起始值' s6 e( f0 o- I; h4 t- \
Statistic, 统计量
6 `) M3 b: X' n8 l, e) O4 i- e8 @+ }Statistical control, 统计控制
# b( d5 U) x0 J( ]" ]6 v* rStatistical graph, 统计图+ {6 B6 ~. D" } q$ e3 @
Statistical inference, 统计推断
/ `) S- w) B, Q3 [Statistical table, 统计表
8 t5 J- ^2 |( s8 ~2 V: L# u5 O9 \Steepest descent, 最速下降法
" [% V+ M4 H" ]. B1 KStem and leaf display, 茎叶图
( x4 ]9 l# F" h# q3 P: cStep factor, 步长因子3 A f. J( A6 c- J7 p4 \7 @
Stepwise regression, 逐步回归
, {! I. y1 N. t' O, J; i" a \& gStorage, 存
7 ~! H" o1 L, ~9 PStrata, 层(复数), M7 W% J1 g/ u! J8 [; A; p) [
Stratified sampling, 分层抽样 n, F2 S" M% L! k+ d4 ]6 }) U
Stratified sampling, 分层抽样
: S. \: `6 d( M/ i$ I( O3 RStrength, 强度. c+ l8 s) m! @' Y: X
Stringency, 严密性, P: s( R- f: N! K: _+ [# O+ y
Structural relationship, 结构关系) C6 [* N: a8 Z
Studentized residual, 学生化残差/t化残差
; i T, M' N5 j/ _- nSub-class numbers, 次级组含量
) H2 o/ k0 a- ?Subdividing, 分割
m) I' [& Y e" h3 U/ m0 \# PSufficient statistic, 充分统计量# H2 X- x5 ~! z6 y( e6 @
Sum of products, 积和
" [# R5 t* `$ R4 U' Q% u1 KSum of squares, 离差平方和
0 g- P z; j6 L% j- ySum of squares about regression, 回归平方和
: A f7 F- f, [$ ~Sum of squares between groups, 组间平方和
, ]7 Z' c0 M) P" C" }/ PSum of squares of partial regression, 偏回归平方和
$ ?9 v C; P$ r& ?- @4 z: USure event, 必然事件
6 I' t' @1 f2 k, GSurvey, 调查2 |. u( O( V6 M- g& O8 h! J: e
Survival, 生存分析! T# h* V( d3 w
Survival rate, 生存率
' X8 X+ r, ~, _Suspended root gram, 悬吊根图1 v" f6 ^+ I/ f9 ?4 l
Symmetry, 对称6 \7 W! g8 }5 L' f2 }
Systematic error, 系统误差
1 o( F1 U8 u! H% a7 Y% L, @Systematic sampling, 系统抽样4 H6 c- l$ s4 O1 w+ F& u& G! ~/ F4 V; Y
Tags, 标签" k5 }2 D5 U. w/ t- O" W5 I% h
Tail area, 尾部面积
7 o! y6 a$ X* {; Z% L) S0 q5 Z. A: cTail length, 尾长: D' w$ r: V8 I8 ?5 G
Tail weight, 尾重2 J! i$ z- d% o E( k
Tangent line, 切线
/ e+ F) h$ B( e. B1 ~Target distribution, 目标分布. Z( _/ f7 e# s- P( D8 W
Taylor series, 泰勒级数
3 F0 k2 q0 S% LTendency of dispersion, 离散趋势
* R: Y! |% `6 S' B) ]5 I" u4 hTesting of hypotheses, 假设检验/ j" w% o4 z- O
Theoretical frequency, 理论频数, `9 p4 d$ o# }
Time series, 时间序列# J9 K& t, N5 e1 Y& c6 W" E
Tolerance interval, 容忍区间
2 l+ W, }( M2 S2 J- Q6 \Tolerance lower limit, 容忍下限" ~( r3 u% A6 z0 Y; k
Tolerance upper limit, 容忍上限# \# u# x0 o; a
Torsion, 扰率) K8 q6 t: S" R& Y; J+ F" X( s5 d
Total sum of square, 总平方和. e7 }7 t/ f1 V8 g" y
Total variation, 总变异8 h; z' n3 q/ f5 S8 D
Transformation, 转换0 v2 m: t; s: H# |6 m
Treatment, 处理
4 ^& {2 T ?1 I' V# rTrend, 趋势
2 ^3 s' i2 n9 R3 z9 [Trend of percentage, 百分比趋势: e2 b; H8 ?% z1 s, Z& V
Trial, 试验
+ ?- u' K' T% z2 M' ATrial and error method, 试错法" E! l! x1 I7 P( ~7 H m( X
Tuning constant, 细调常数
* z$ K, ]( }* C- D) C OTwo sided test, 双向检验' F% M2 @6 D. X6 j+ v( y) T7 n7 c
Two-stage least squares, 二阶最小平方- q' }. |$ T4 \
Two-stage sampling, 二阶段抽样
* B/ J0 H9 N* Z' }6 Y, XTwo-tailed test, 双侧检验/ a. j9 {. ~/ a$ Q
Two-way analysis of variance, 双因素方差分析$ p+ I6 t e! V$ I
Two-way table, 双向表
}, b0 ^, S% D' \6 ^* [& ~Type I error, 一类错误/α错误- d; w0 K3 e' O% q: G0 m
Type II error, 二类错误/β错误. ?4 Z$ N* ^+ Q- I3 Q: l5 g
UMVU, 方差一致最小无偏估计简称3 ?8 B' b( B. ~, ~
Unbiased estimate, 无偏估计
9 x& a0 D9 \6 A9 ~# iUnconstrained nonlinear regression , 无约束非线性回归
* v. l# U5 H+ z( Y% m( r+ |Unequal subclass number, 不等次级组含量+ y+ n Z6 }5 b7 ^& u6 X( a
Ungrouped data, 不分组资料, s2 A# \! F6 o; B
Uniform coordinate, 均匀坐标% z% ?7 J e2 S+ b/ C z& B: \
Uniform distribution, 均匀分布
% T; d& b. D4 bUniformly minimum variance unbiased estimate, 方差一致最小无偏估计
% Q% |5 I3 F4 K* I( Q6 o/ O- P6 HUnit, 单元' v1 Q3 X8 z5 N) r* |5 P
Unordered categories, 无序分类
- e/ k' k0 t! w8 b8 P$ @Upper limit, 上限
0 j" q6 Y Q+ ]$ r8 pUpward rank, 升秩: x2 l. f: W! X- [5 w
Vague concept, 模糊概念% P- q" E% G! ?# f9 }
Validity, 有效性
0 n" Q) @8 n+ e0 CVARCOMP (Variance component estimation), 方差元素估计
% W, j9 H; P. {9 j) a, NVariability, 变异性- M J3 ?2 S- D/ R. Q# _
Variable, 变量# L3 n! I6 Q) k) U* v. G5 d
Variance, 方差
% k. D2 g# a; b; G6 B: yVariation, 变异
1 _& }9 p8 O- m* ^Varimax orthogonal rotation, 方差最大正交旋转1 ^- a- ]6 e/ Q c% I+ Z: y
Volume of distribution, 容积+ |# F* t( Z, B
W test, W检验
4 o0 z; n1 _/ k S, {9 z* y& JWeibull distribution, 威布尔分布& {* {2 T/ W( `% X
Weight, 权数) o) \6 f0 P/ c( W
Weighted Chi-square test, 加权卡方检验/Cochran检验
6 z+ v6 D. v7 Y, aWeighted linear regression method, 加权直线回归
# m5 k7 Z8 ?: W1 m: W( ~4 bWeighted mean, 加权平均数
6 q6 B% a; C5 J# FWeighted mean square, 加权平均方差
8 q7 b; S8 y8 o8 e, v6 vWeighted sum of square, 加权平方和* x- p* j$ z7 O
Weighting coefficient, 权重系数
" {# y3 W% \" T% y" p) B- U2 D4 rWeighting method, 加权法
& L* P! I) V c/ G6 ~( jW-estimation, W估计量" P: z$ b1 h+ m
W-estimation of location, 位置W估计量, F) ]6 W( O8 Y/ _4 f6 [' D
Width, 宽度+ F( W1 I! C1 w% Y. f, J# x5 m
Wilcoxon paired test, 威斯康星配对法/配对符号秩和检验7 i' c! a8 f' }
Wild point, 野点/狂点- c* H3 N! s% y
Wild value, 野值/狂值% O3 ~. r* n- d' @. [7 a n; f$ u1 L
Winsorized mean, 缩尾均值3 {' v+ x# M3 ]% l
Withdraw, 失访 - M; e3 K |+ G8 t
Youden's index, 尤登指数
* o6 i# y% e# Z" FZ test, Z检验
) M/ C" j" Q" Z9 M6 f1 ^* H* ?Zero correlation, 零相关
5 u+ g( u7 K" n. K) u: e. G4 H5 C% }Z-transformation, Z变换 |
本帖子中包含更多资源
您需要 登录 才可以下载或查看,没有账号?注册会员
x
|