清流社工网

 找回密码
 注册会员
查看: 6461|回复: 0

[社会调查] SPSS软件中英文对照词典

[复制链接]
发表于 2009-1-6 22:05 | 显示全部楼层 |阅读模式
Absolute deviation, 绝对离差# x' R8 Z) Y' q" c# B; }/ U
Absolute number, 绝对数
% u" L1 m4 R. Z9 h3 K# K8 z7 kAbsolute residuals, 绝对残差/ y& \6 @5 m# Q  _- H/ U9 K
Acceleration array, 加速度立体阵
- ]8 J. t- |4 T# z% iAcceleration in an arbitrary direction, 任意方向上的加速度
& @6 r0 N, ~! @: HAcceleration normal, 法向加速度
0 _# U! G3 }" H& m0 d9 G8 O& CAcceleration space dimension, 加速度空间的维数" u- ?; y. u. v- i) J
Acceleration tangential, 切向加速度4 ?) O: c+ U# [& F" e* _" n% f
Acceleration vector, 加速度向量" T9 v; E: j/ m+ A# o; Q5 d6 q
Acceptable hypothesis, 可接受假设9 e5 b3 J; @+ f. M; m$ q5 M
Accumulation, 累积3 c( }3 q) R0 J; q
Accuracy, 准确度# S6 @/ b4 }: P% W; a) J- T3 m
Actual frequency, 实际频数
; o$ c8 L+ u0 E8 qAdaptive estimator, 自适应估计量
' [" q4 [0 c% [0 n1 J( {% @Addition, 相加+ m. i7 a+ c: v; B0 G
Addition theorem, 加法定理
# T; G) G; \  nAdditivity, 可加性
( {- O& l. v; |) y1 CAdjusted rate, 调整率- @% c! f8 D1 A3 [) `; [. x+ P
Adjusted value, 校正值
4 R4 l$ U6 I7 s6 ^Admissible error, 容许误差
0 I" q$ L9 g4 ~, F; aAggregation, 聚集性, h8 T8 I, e, F8 \. ~
Alternative hypothesis, 备择假设, |% i. l4 u+ |6 r& G1 y
Among groups, 组间
; u8 I8 p! T) QAmounts, 总量
% \; X4 d& n, u: hAnalysis of correlation, 相关分析
; c4 P  X0 A. w9 c3 O: Y: Q& ~Analysis of covariance, 协方差分析
/ p7 ^5 }6 ^( u" W8 `. nAnalysis of regression, 回归分析
& W$ a# T% n) b7 V- O" lAnalysis of time series, 时间序列分析" P* e. t. }. v) c3 h5 I4 Q# W/ e
Analysis of variance, 方差分析4 f% h& k: V8 q3 X. T1 \3 X/ k
Angular transformation, 角转换
2 X. m% B( [% X% gANOVA (analysis of variance), 方差分析. [5 Y9 c8 J, v2 t% q/ p7 r  G3 n, A
ANOVA Models, 方差分析模型  d2 q1 r8 R" x
Arcing, 弧/弧旋
+ Z# |, T" B$ t, p4 oArcsine transformation, 反正弦变换
% p& G/ Q$ l3 R* a; x4 ~+ XArea under the curve, 曲线面积
/ [& W2 f* Z. W4 T) {7 ^" pAREG , 评估从一个时间点到下一个时间点回归相关时的误差
8 d- J  O" K) i; G9 F( hARIMA, 季节和非季节性单变量模型的极大似然估计
' p9 H% c# Y+ ^" p5 {4 P" k% yArithmetic grid paper, 算术格纸
+ b; }" Y6 {1 @1 F. L* Q! \: [Arithmetic mean, 算术平均数
$ h8 Y- H' }, l' TArrhenius relation, 艾恩尼斯关系
& d0 k( F' R" c( l4 VAssessing fit, 拟合的评估
3 p% P! n2 }9 V# b/ O& Y( x) kAssociative laws, 结合律
7 W1 }, k# O( _" t. U5 y: ?Asymmetric distribution, 非对称分布2 i2 V9 @" f& X6 C, b
Asymptotic bias, 渐近偏倚
; P; K" `& W* ]7 s9 H: t. p1 {, U! ~Asymptotic efficiency, 渐近效率
8 S6 f! T6 T0 x0 b! j7 t, L0 TAsymptotic variance, 渐近方差8 t9 M" E: {# }1 u. A: X1 ^
Attributable risk, 归因危险度
7 Q5 `- Y9 u- r. T0 vAttribute data, 属性资料+ ^9 k7 ^0 h( ]0 E
Attribution, 属性; B! S) P6 E/ m2 R2 T
Autocorrelation, 自相关7 i  P, u' Q" Y0 t
Autocorrelation of residuals, 残差的自相关. y8 E4 u7 q) s! h# s9 n) U
Average, 平均数+ f6 \% ~) W0 h; U
Average confidence interval length, 平均置信区间长度
( M& k% N4 x" s' g8 rAverage growth rate, 平均增长率; o% ~- b$ M0 v. J$ ^8 j" V7 t: k
Bar chart, 条形图
6 a( B/ @6 l! t6 lBar graph, 条形图
4 w2 J5 r& Y$ v% ^Base period, 基期3 m1 J6 x, j/ N) |- V# o4 Q
Bayes' theorem , Bayes定理
/ K0 a6 }7 S+ @0 t0 P' ]Bell-shaped curve, 钟形曲线
8 y/ J/ s& c8 c! K7 _0 R3 wBernoulli distribution, 伯努力分布
: ~9 ^$ k, z- Q; \& x- C- _Best-trim estimator, 最好切尾估计量2 K: _  t4 y; Y7 {' V" @: `
Bias, 偏性7 U1 H8 j( K7 x! _0 E* s4 s
Binary logistic regression, 二元逻辑斯蒂回归
) K& T1 q4 c& j1 T- F# gBinomial distribution, 二项分布
# C0 Z3 F! p/ @/ ?0 |+ ]" qBisquare, 双平方
1 y$ |% l6 `: V6 X( ?! v) gBivariate Correlate, 二变量相关
8 r/ b3 w5 {0 W" R! E! t' Z& cBivariate normal distribution, 双变量正态分布
; t3 T  s! m+ N2 NBivariate normal population, 双变量正态总体  b; H" d% s& ?
Biweight interval, 双权区间, s5 d2 Y! H; M& \
Biweight M-estimator, 双权M估计量* B( E1 Z" \1 P
Block, 区组/配伍组
' w4 J" [, u' D4 X; n9 C5 c% RBMDP(Biomedical computer programs), BMDP统计软件包7 F" P* j; r' v! G) i% a
Boxplots, 箱线图/箱尾图! b' Z# O/ u& W, b; m0 G
Breakdown bound, 崩溃界/崩溃点. r) w6 n* r) v: U+ _" p
Canonical correlation, 典型相关0 S  j6 _7 e& V+ B# z8 }
Caption, 纵标目
, D9 S5 _) p3 }5 n# R( xCase-control study, 病例对照研究
& x( i. j& I+ b; V* ECategorical variable, 分类变量& w) g7 w2 l- \5 Q) Q: U
Catenary, 悬链线
& F  \$ a" s8 ?, yCauchy distribution, 柯西分布
- ]: c' j  b2 M" P4 `% HCause-and-effect relationship, 因果关系
; K  J3 {& y1 S9 U5 J8 ~, PCell, 单元
! x7 \9 I4 s5 f2 i2 t. a. f( O6 ~Censoring, 终检$ A4 h6 i# ~3 {! j% U1 `2 B
Center of symmetry, 对称中心0 }$ F" ?' p* J0 V: U% t3 @
Centering and scaling, 中心化和定标
/ H# q  k! l, E4 yCentral tendency, 集中趋势
# p3 n+ R) s7 W7 z" hCentral value, 中心值8 y0 |9 g$ `) u) A
CHAID -χ2 Automatic Interaction Detector, 卡方自动交互检测
: L* m" U, r8 O) z8 _5 F) V. u0 LChance, 机遇
- Z) `/ {4 c/ F0 d9 HChance error, 随机误差1 `. J6 K- U: c
Chance variable, 随机变量) |/ R4 t% g1 w' _! v) R; Z, D7 v* x/ S
Characteristic equation, 特征方程' P: c; m3 L/ r+ H! @) Y- x: m
Characteristic root, 特征根3 d5 G2 K8 ]$ O. u1 a  d* M8 S
Characteristic vector, 特征向量
4 w' N0 N$ g3 i; z/ ?Chebshev criterion of fit, 拟合的切比雪夫准则
& o4 G* l, i+ B4 R% L8 EChernoff faces, 切尔诺夫脸谱图
( V' o/ i( b! Z& P4 [. R: y6 zChi-square test, 卡方检验/χ2检验
- o+ I# i! g, [% k' |8 fCholeskey decomposition, 乔洛斯基分解
8 Z! C' @" o* PCircle chart, 圆图 2 V0 ?* v* s+ U2 }
Class interval, 组距! F8 {; v! L. S
Class mid-value, 组中值( ~2 D- S3 s( K
Class upper limit, 组上限% g" f% p' e/ }; X4 B" Q0 \+ L
Classified variable, 分类变量, e2 U2 F& Z/ D  P4 U
Cluster analysis, 聚类分析
5 J  R) k! H; kCluster sampling, 整群抽样* G1 e9 `/ ]; ?. U" t
Code, 代码5 j, _+ F* x& _% T
Coded data, 编码数据4 f( ^" ^5 w( i( J  @% Q; W
Coding, 编码) h- Z: S6 @; W. ~8 S
Coefficient of contingency, 列联系数& n& g+ q$ i) t* A8 i: Z  i
Coefficient of determination, 决定系数* v5 y8 e' T( {" M0 N
Coefficient of multiple correlation, 多重相关系数
8 ^- P+ D8 w6 E; x2 k) CCoefficient of partial correlation, 偏相关系数3 M3 C6 j) n- L* w# Y, d3 A! i
Coefficient of production-moment correlation, 积差相关系数
; J) O/ L6 g: L9 q" KCoefficient of rank correlation, 等级相关系数& W. o8 k0 U0 Y/ T; D
Coefficient of regression, 回归系数  h3 k- ~! N' n- M/ {
Coefficient of skewness, 偏度系数
2 S- }3 K: a' I& U. E4 ]Coefficient of variation, 变异系数
5 z; ]% ~/ V9 a* N, U1 C% p+ Z4 vCohort study, 队列研究, p9 y: U0 v. E& A
Column, 列6 P$ S; C; f* ~: D8 f4 a
Column effect, 列效应0 d( E* g5 |$ ~( T: _- j$ v
Column factor, 列因素
4 o5 `( V( V& h0 G2 D6 U! ~Combination pool, 合并( B; ~( z0 Q, S6 _+ |
Combinative table, 组合表7 s+ J# l0 \# D8 J0 m% ?8 D# y
Common factor, 共性因子
2 q4 n8 I8 x: W! k. X$ _Common regression coefficient, 公共回归系数$ r; Y' w* h; Z
Common value, 共同值
  M5 Q& j# i+ Z( dCommon variance, 公共方差
3 M) a; g5 L$ n/ z5 `3 K! @% K, \Common variation, 公共变异
" M: N1 Z: D* Z0 U# v# @Communality variance, 共性方差/ a- z" T& K3 y/ Z3 L
Comparability, 可比性; v- Y$ j: D! y# ]/ W
Comparison of bathes, 批比较# Y  \0 y! e/ j. @) `5 {" L
Comparison value, 比较值
/ b  @8 {2 @, k: ~Compartment model, 分部模型
" y1 @+ D5 Q5 u! g  j8 U) pCompassion, 伸缩
% t7 W& B9 _5 ^" |# JComplement of an event, 补事件
; I# `) p; X+ I. }3 G% i9 z- o. uComplete association, 完全正相关
! H: t2 n7 C6 D' V% PComplete dissociation, 完全不相关; u* z5 _  T0 R$ H0 D, H
Complete statistics, 完备统计量7 C3 q4 S" ~8 Y- B! W
Completely randomized design, 完全随机化设计& _* b3 x; [% ?) Z1 Q
Composite event, 联合事件5 `$ A# Y& Z0 M
Composite events, 复合事件
! y' B8 @6 a$ vConcavity, 凹性
7 q! f  T! O! I$ HConditional expectation, 条件期望. B6 t" O: d7 c8 I1 v8 T
Conditional likelihood, 条件似然9 t8 ^* r. u: A; O: g4 @6 v
Conditional probability, 条件概率0 g9 y, \( s2 f) E7 g; H
Conditionally linear, 依条件线性1 i% R3 B# B5 F' G2 G
Confidence interval, 置信区间# b: m4 u5 F) g
Confidence limit, 置信限3 w% ~' O0 [- _# I" [
Confidence lower limit, 置信下限% F3 Q6 J- P7 M) b
Confidence upper limit, 置信上限
( U  g2 K) [# G- IConfirmatory Factor Analysis , 验证性因子分析( {5 _: k  `* C  n: r! l4 j
Confirmatory research, 证实性实验研究
; U( m6 |/ b0 \$ g- [8 dConfounding factor, 混杂因素
6 t* a1 h) S4 ~! ~( VConjoint, 联合分析
6 y8 q) m& F# Y5 G) uConsistency, 相合性- X; s* l2 Z4 G2 X. H, v; A% D* y# R
Consistency check, 一致性检验# X. [, _) L2 b+ S( S* O/ S/ z
Consistent asymptotically normal estimate, 相合渐近正态估计
8 ^+ w4 c1 J1 R2 x# J$ lConsistent estimate, 相合估计" g8 ]( v/ c7 S" {
Constrained nonlinear regression, 受约束非线性回归
8 x, `. G8 V7 FConstraint, 约束/ u& L5 L/ Q% _) n
Contaminated distribution, 污染分布
/ y- V4 K0 M. j- c) UContaminated Gausssian, 污染高斯分布- W8 W. @( Z. Z0 J* o, }5 |
Contaminated normal distribution, 污染正态分布
  u8 T8 U" P6 q$ J; f8 NContamination, 污染
  F  u+ O, C; R  ^# eContamination model, 污染模型. Q* F8 u9 r  ?3 {0 l
Contingency table, 列联表* L4 }: @4 e& L& V* L+ c
Contour, 边界线
% o; ]+ L- V/ q  o4 [Contribution rate, 贡献率  q9 y: {. i6 W9 G6 p
Control, 对照- G2 X4 N9 i6 A: I  K. i
Controlled experiments, 对照实验1 S* y6 Y, @/ ]$ W4 I/ Y
Conventional depth, 常规深度
: H- d+ z1 B( P7 V3 O0 i5 B$ `Convolution, 卷积! A) H+ F  o# X$ c. u4 A
Corrected factor, 校正因子1 L" L* ~, {  T+ m
Corrected mean, 校正均值/ U5 Q& v- m) y! q, D$ ?/ p
Correction coefficient, 校正系数: p: }0 Y; w2 p
Correctness, 正确性+ U% Z" n1 ?6 b8 m% V" t
Correlation coefficient, 相关系数
$ t0 N6 U! M/ d) h' z- b. NCorrelation index, 相关指数
  B  z% Z/ \* \" H5 N( Z+ y- [% v0 ~% uCorrespondence, 对应
5 s4 N4 f  ^$ ^  ^# ]Counting, 计数
% E# f! Y; ^+ S% X/ `0 M2 `5 K$ CCounts, 计数/频数
9 V; |+ O5 _, W1 b2 ?- p; GCovariance, 协方差: A- r& \6 ]. Z! s  S( ?5 ]
Covariant, 共变 ! v* E) c0 S8 ]6 }* F
Cox Regression, Cox回归# X: O2 D7 X( P: N1 V
Criteria for fitting, 拟合准则
2 _* X9 i" g0 s" P( d- m; [* YCriteria of least squares, 最小二乘准则" _8 A. g1 s# [: m6 \
Critical ratio, 临界比
' N1 x7 W# O2 M/ d* sCritical region, 拒绝域
+ t+ \0 z+ d! K$ hCritical value, 临界值9 S, C: {% f4 s0 N
Cross-over design, 交叉设计
* S' Q2 O5 G7 U: B. l% c+ }Cross-section analysis, 横断面分析
4 m8 }3 ^+ h. M' ZCross-section survey, 横断面调查
' {& L: N) @/ z- c1 C. E- P7 `Crosstabs , 交叉表 + l  x' h, v( {6 T. W
Cross-tabulation table, 复合表8 P7 u$ e* I9 O! P+ S! ?3 g' S
Cube root, 立方根
+ A  E* O. |% c: kCumulative distribution function, 分布函数7 E/ g. J& b! ^* v7 o
Cumulative probability, 累计概率
2 w4 K: X5 k# H5 y* E1 a# }2 sCurvature, 曲率/弯曲
4 C% |& O1 d) G  o: ]Curvature, 曲率
8 J# i. C' r; I* G- z3 v, @& x, {Curve fit , 曲线拟和 . D% b' t% u+ T- d$ u
Curve fitting, 曲线拟合& T3 R/ S0 W6 m" |
Curvilinear regression, 曲线回归
; @  O  D4 c7 e+ M0 [( V. zCurvilinear relation, 曲线关系- O+ m; i% `( i- r5 h
Cut-and-try method, 尝试法
( g+ G4 B) \" Y* ^' |8 ?Cycle, 周期( q0 [) N$ s& d) R* R
Cyclist, 周期性) y9 p& f+ |/ M1 d9 c9 D
D test, D检验- Z$ h+ M( q4 ~9 E
Data acquisition, 资料收集& S- V: ^5 ^9 U* j
Data bank, 数据库; Z- m! ]; z  _, @
Data capacity, 数据容量' Z0 w0 f+ T5 F' x$ U5 K2 b4 f
Data deficiencies, 数据缺乏
* \9 t9 z9 l) H6 B9 B# u1 ?Data handling, 数据处理1 t& O" [) z/ M; A
Data manipulation, 数据处理, a: ]2 a* n; z8 a* B7 ~
Data processing, 数据处理6 L: M' K% @; S+ |# |" p
Data reduction, 数据缩减
& V, @0 C: d( jData set, 数据集* x3 y! S0 ^7 w9 j1 F
Data sources, 数据来源" V/ k3 D# R; ^
Data transformation, 数据变换
6 k( }5 ~( Z0 ?' t% D: t) ^" U0 `Data validity, 数据有效性
4 j7 x$ ~8 z! ~/ YData-in, 数据输入
+ P: i* c# C  a: A: x4 fData-out, 数据输出
) O4 M- l7 I' J, {& l. H3 FDead time, 停滞期5 w5 [0 {1 y1 ?" t
Degree of freedom, 自由度0 ]! y5 y% y9 d3 n. \* g: C0 W8 H
Degree of precision, 精密度
+ w# O6 B0 W9 F4 W8 TDegree of reliability, 可靠性程度8 q0 l2 {' R: x7 S6 O
Degression, 递减
9 \3 R6 F# ]; q! kDensity function, 密度函数: Z% j/ Q" ?7 S
Density of data points, 数据点的密度
+ Q+ w( `7 k# ]Dependent variable, 应变量/依变量/因变量
+ @" r6 E( U& a8 Q7 L7 _; `1 ?Dependent variable, 因变量6 v5 v6 p/ E% a, ~7 T
Depth, 深度; m- f9 \  B; @- n+ H; _3 _
Derivative matrix, 导数矩阵: h& U7 g( q+ k+ d( Q
Derivative-free methods, 无导数方法. O' O* j% _: H9 @7 g% b- {
Design, 设计# R1 h# v' v3 J% u+ `
Determinacy, 确定性1 C  u! w- u, H' T% Z
Determinant, 行列式  H6 y3 R9 H0 h6 {/ }
Determinant, 决定因素: o  R; u% O& J1 l+ Q& n
Deviation, 离差
5 m; t1 ?5 R* i& s) aDeviation from average, 离均差8 H0 Q2 r, i5 e" C
Diagnostic plot, 诊断图
# p( ?1 Q5 x7 @$ G4 c! B7 DDichotomous variable, 二分变量3 N1 B  m( b$ J  \7 H- A4 ?
Differential equation, 微分方程
$ U  H; d( ]: ADirect standardization, 直接标准化法
! L6 C' _2 Q  t9 Y% N# hDiscrete variable, 离散型变量
. t% Z+ U: @. r6 q% {DISCRIMINANT, 判断 & k5 `. Y0 m1 e+ i
Discriminant analysis, 判别分析  _1 n' L/ f# \+ k, ?& V( b
Discriminant coefficient, 判别系数8 d, {5 w5 a2 N
Discriminant function, 判别值
; N( Y9 B+ b% O0 pDispersion, 散布/分散度  D1 {) C1 x- Z( q9 Y: p( [
Disproportional, 不成比例的( Z3 J- n" S& n/ R" j2 v9 K% M) x
Disproportionate sub-class numbers, 不成比例次级组含量
$ r0 z4 t" I+ Q$ O8 l/ a' ]) cDistribution free, 分布无关性/免分布
2 u4 }" F2 ^8 ]5 j& `' jDistribution shape, 分布形状8 y- I9 [- n; O% p1 s0 d; c; |
Distribution-free method, 任意分布法$ @6 C6 a$ |% }+ ^4 X' }7 q# ]
Distributive laws, 分配律" k& K$ B- ~% N! M6 W- r
Disturbance, 随机扰动项' X1 |% \) F9 ~: Q; @7 r
Dose response curve, 剂量反应曲线) X* y3 ]# X6 r. M, h' q
Double blind method, 双盲法
1 a+ n1 B3 W( d) X% d5 zDouble blind trial, 双盲试验
; O1 O$ @& |' y( ^8 mDouble exponential distribution, 双指数分布
/ w( ?2 }# R. E" \+ WDouble logarithmic, 双对数1 W3 Q6 `# |8 M2 I2 P1 |
Downward rank, 降秩
+ `7 n! j; L% G! k  XDual-space plot, 对偶空间图1 q# E: k8 ?& k1 B5 g
DUD, 无导数方法# p+ {- M2 n8 g  a# k* D% N
Duncan's new multiple range method, 新复极差法/Duncan新法
8 p( @& \) q3 b$ X% J, {) U8 n% vEffect, 实验效应
, a# P8 W  ?* P! M/ LEigenvalue, 特征值% R) R' n1 S$ S1 W' j3 b2 g
Eigenvector, 特征向量
+ N. \: m, b6 r2 u9 s5 j! LEllipse, 椭圆
- o* h: y8 ^' Q( S) _$ jEmpirical distribution, 经验分布
; Y- Z3 _: M9 F) l# {# OEmpirical probability, 经验概率单位/ }5 o; K) E- }; i
Enumeration data, 计数资料+ u: N- ?9 v2 s8 d: c5 }
Equal sun-class number, 相等次级组含量
' C4 i. G/ G* X( OEqually likely, 等可能. g' y2 V. ]' c1 `$ K! _) h+ W
Equivariance, 同变性& I; K0 K: {& Q( C6 Z+ n  d
Error, 误差/错误
) D. p% T+ B) y/ y& ~2 S8 g3 cError of estimate, 估计误差1 S7 U' R& f* D7 ?
Error type I, 第一类错误
/ Q/ w- e, m0 d9 t  `$ R  XError type II, 第二类错误
+ p* Z/ v( J' b: u) mEstimand, 被估量, V* R9 ?0 ]3 `
Estimated error mean squares, 估计误差均方
, ]2 }( l+ G5 |1 [  ^+ v, r* {Estimated error sum of squares, 估计误差平方和& s% W. F3 T: i! t
Euclidean distance, 欧式距离2 j% G, A: x4 ?0 T5 t0 J
Event, 事件7 q: Z0 I* |1 Z4 V5 q" X: t
Event, 事件, Y6 u' Y& ~0 F
Exceptional data point, 异常数据点6 R- x; {- V+ \( M4 R! O. p  H, G
Expectation plane, 期望平面
& M: m) |! v- j6 M; `Expectation surface, 期望曲面' ^( v  n( Q+ J5 l/ K
Expected values, 期望值0 f3 ~! o+ M7 S. }# H
Experiment, 实验
3 ^' G8 }" \, E2 p3 AExperimental sampling, 试验抽样2 i$ @, E5 F$ q8 F9 s+ b) @- x
Experimental unit, 试验单位1 ^, S0 R8 ~9 q- V: P9 q  |) E
Explanatory variable, 说明变量
( g- A. {. a1 L) oExploratory data analysis, 探索性数据分析" K: i% a0 o! g# b: j
Explore Summarize, 探索-摘要' |: m& G: g5 l' K3 \
Exponential curve, 指数曲线5 |4 H' I. A4 I8 b
Exponential growth, 指数式增长
/ i& h* K6 O/ b5 B8 t: p7 s- ~! i; h3 GEXSMOOTH, 指数平滑方法 : Q! t* u3 m2 x! ^
Extended fit, 扩充拟合
0 ~; y5 u& q+ A9 E2 S" gExtra parameter, 附加参数1 `8 d; L+ n6 x& H* Z6 [
Extrapolation, 外推法
6 m* p  N3 n+ ZExtreme observation, 末端观测值
9 a3 P; @9 T) MExtremes, 极端值/极值
1 [) N6 [6 h% ]- ]6 B/ C1 lF distribution, F分布
# T7 a( G7 \" V6 ]& _7 @F test, F检验" s9 \6 P/ R2 ?  h  O' V
Factor, 因素/因子
. j; P$ |1 c  `4 W8 z9 ~, xFactor analysis, 因子分析+ g! P3 p$ ~9 N9 y+ h% d
Factor Analysis, 因子分析
1 }3 A1 H* z: ~5 A! G% X& wFactor score, 因子得分 / O) D( D7 w) ]
Factorial, 阶乘
- l  {3 M0 Q6 e4 h% ?* g) [) P3 {Factorial design, 析因试验设计
  s! U$ P0 \& u. J5 X* XFalse negative, 假阴性
) G' n. ~& d, l$ b- _  sFalse negative error, 假阴性错误6 n/ w% i' h/ u: G4 p& ?
Family of distributions, 分布族
$ ?* `1 v. X& P1 CFamily of estimators, 估计量族* J) \0 ]* @3 [, ]: Z
Fanning, 扇面
0 V/ {- Q0 O" Y4 BFatality rate, 病死率! D$ ]) S& P1 G0 u6 S, _9 U/ k1 G* m
Field investigation, 现场调查0 {7 @. m% o4 g* T# L3 I5 q+ U
Field survey, 现场调查2 w/ J- f" U: c2 u$ N
Finite population, 有限总体1 S0 x3 R5 E: s' Y
Finite-sample, 有限样本
/ `! M6 O6 w+ g. N2 ^6 ]! lFirst derivative, 一阶导数: c1 i! A+ v8 q5 U8 E0 E
First principal component, 第一主成分* G, l/ X- n# x; j
First quartile, 第一四分位数
1 Y+ p) {. }1 ?) C, B4 I0 `Fisher information, 费雪信息量
5 [# l7 f* F  g7 l5 ?Fitted value, 拟合值) {4 @% j3 E! e2 g$ [8 z2 ?
Fitting a curve, 曲线拟合
. z- f- J  L8 S. t+ s0 [, BFixed base, 定基
) }2 z0 O  C% B7 QFluctuation, 随机起伏7 Z1 a- h8 }0 Q& S6 k6 [7 K2 D' l" G: _; h
Forecast, 预测
: _% V0 G, ]6 p1 wFour fold table, 四格表
4 `5 b* j/ L' h" i3 R. i. LFourth, 四分点$ U+ I4 Z+ ^. }( S1 h$ z$ x/ ]- o  @. V
Fraction blow, 左侧比率
0 v' l" q5 V( j8 L1 M4 R" pFractional error, 相对误差2 z$ ?+ b& X. G! x
Frequency, 频率6 Y. J1 t3 `$ }/ {: _0 P
Frequency polygon, 频数多边图9 ~+ l7 N$ s! e. F/ L- r
Frontier point, 界限点
, x$ q' k8 l! B# {! R1 W# H3 [Function relationship, 泛函关系7 S+ p, W6 P- a( |
Gamma distribution, 伽玛分布! A: I# }7 }; {
Gauss increment, 高斯增量
  h" L, m7 z, S* N7 d% a% mGaussian distribution, 高斯分布/正态分布! @$ y4 ^+ V+ w7 Z+ O
Gauss-Newton increment, 高斯-牛顿增量
" o4 a7 U- {; t( NGeneral census, 全面普查
0 _) ^# N  l" H- RGENLOG (Generalized liner models), 广义线性模型 8 X, Z+ ~6 U4 U* r
Geometric mean, 几何平均数
: a7 S* u# Y& e3 vGini's mean difference, 基尼均差+ m+ s, L2 u4 ?- ]* Y
GLM (General liner models), 一般线性模型
2 v) S4 z( b& A" k2 e8 CGoodness of fit, 拟和优度/配合度# |8 Z4 K4 I% u' {# a8 s
Gradient of determinant, 行列式的梯度% o. {) n. o: n
Graeco-Latin square, 希腊拉丁方. l0 X' \  q% Y- |- p
Grand mean, 总均值
" b& }; h, u3 y7 \6 bGross errors, 重大错误2 F  l. w9 g3 G: w7 w4 _
Gross-error sensitivity, 大错敏感度# s0 Z0 J7 K9 y- `1 [
Group averages, 分组平均
0 b: F: V( ~5 j& ^; Q( GGrouped data, 分组资料* |3 V& N7 M8 T& z
Guessed mean, 假定平均数
( C$ c0 K! t/ uHalf-life, 半衰期2 M1 W* z" g4 ^% }/ E) G# I' A; _
Hampel M-estimators, 汉佩尔M估计量
/ u$ p' C8 p0 g( g% `/ ]8 Z$ VHappenstance, 偶然事件
( [/ y4 ?. T* B  H8 }Harmonic mean, 调和均数1 q! E4 h- u9 m" L/ v  G" e) }
Hazard function, 风险均数0 i/ f/ q: g, M+ z8 |( ]. h% M! P( Y
Hazard rate, 风险率
! ~& e% W/ C3 N$ p6 s; pHeading, 标目 0 `8 `9 p. V- u4 ?# Y
Heavy-tailed distribution, 重尾分布. s9 y. v" P) X% l9 Z2 S. X" [8 }
Hessian array, 海森立体阵$ ?( h' ?) H. c
Heterogeneity, 不同质7 o/ Q& h6 p0 Q! @
Heterogeneity of variance, 方差不齐 3 n% Q( ~1 d: `6 N) U0 `6 ]1 u& D! G
Hierarchical classification, 组内分组
3 M4 m$ f+ h+ OHierarchical clustering method, 系统聚类法: U9 W( g  T- Y3 |0 V0 X
High-leverage point, 高杠杆率点+ N$ Y& ]$ a$ K- |, F& r6 s0 c9 s
HILOGLINEAR, 多维列联表的层次对数线性模型$ x( _6 U8 R$ |* @5 h% C
Hinge, 折叶点
) s& ?) }! |( i$ b! x9 y8 NHistogram, 直方图
+ \- \# ]& S. ?# ]- X: NHistorical cohort study, 历史性队列研究
5 @" Z2 H4 J8 o& DHoles, 空洞
" r* b* h) W2 {( K2 iHOMALS, 多重响应分析& S7 P3 O. {4 T2 W* N3 _1 K8 u
Homogeneity of variance, 方差齐性' i- M, U8 t3 ?0 ?6 J. F5 ]
Homogeneity test, 齐性检验
0 x2 F. f+ N7 bHuber M-estimators, 休伯M估计量
4 r( c" v" }, X3 P, YHyperbola, 双曲线( v1 ^! i2 o1 [9 x3 |; p
Hypothesis testing, 假设检验
( ^8 p1 `' J6 {" UHypothetical universe, 假设总体/ [; N- ~6 W; R/ V, h& z
Impossible event, 不可能事件
1 B, s! T: V3 K9 |8 KIndependence, 独立性( q9 W* W# @: t5 z
Independent variable, 自变量# [; Y0 x& m1 ?, K" g; k; v+ B! ?
Index, 指标/指数
; B9 ~; y7 H' [$ d+ W1 e5 n7 tIndirect standardization, 间接标准化法
' Z* i: I9 v9 Z! s; b+ {  m9 N: u* ~( eIndividual, 个体' G2 ?3 Q- k# D$ ?$ \
Inference band, 推断带/ s2 t) }) T+ O8 s+ n. U$ }+ e+ ^" ~. N
Infinite population, 无限总体9 C2 i9 p) p( W5 K- P
Infinitely great, 无穷大
- \! ^" a% g4 Y3 w" G* B( L- G/ j, W: qInfinitely small, 无穷小4 v8 I' ^- z2 ^! o8 D8 f/ b
Influence curve, 影响曲线; ~3 H" j7 N# D5 K, G" E
Information capacity, 信息容量* v7 Z  b* q8 t8 k3 w+ a: M7 X
Initial condition, 初始条件) ?( L& u3 H" A' Q
Initial estimate, 初始估计值
  t5 E; j4 b- b, s4 iInitial level, 最初水平
. c, g; {3 H: e( d) aInteraction, 交互作用
6 Z) L" n: ]- K, L9 l: ?Interaction terms, 交互作用项! O7 j: B& y/ |$ a; d( W
Intercept, 截距1 C2 P& B' O6 f; O" K3 _2 V
Interpolation, 内插法
  T) I! @) v& m& _. H( D) nInterquartile range, 四分位距, y2 l; R* ?$ d( t* q: T# Q
Interval estimation, 区间估计
" t* r9 k7 I: k8 R/ v  |" K8 iIntervals of equal probability, 等概率区间
2 D8 G4 q& i5 F  {Intrinsic curvature, 固有曲率5 I3 ]! X3 O% T
Invariance, 不变性
, f8 V2 b8 ?9 N2 t2 i: n) v* M2 mInverse matrix, 逆矩阵" q% u) C7 G& r& Y, {" s
Inverse probability, 逆概率/ m) ?0 m' J1 Q4 V% V1 B8 M
Inverse sine transformation, 反正弦变换$ W4 B( n3 C" x8 E. s- b1 q
Iteration, 迭代
, W/ J# H% F0 W# w# a* A8 gJacobian determinant, 雅可比行列式
$ B: T* D# C, ]* P2 S4 b/ SJoint distribution function, 分布函数) P, e& L4 Y3 a  [
Joint probability, 联合概率
* A' C. J7 n9 I6 `; R" N8 cJoint probability distribution, 联合概率分布8 S6 _  s6 _* v8 Y! }) N
K means method, 逐步聚类法
6 ~6 p* |! w8 z1 w; qKaplan-Meier, 评估事件的时间长度
3 B6 \( v9 ]9 f5 U( l5 zKaplan-Merier chart, Kaplan-Merier图( X4 F4 n+ R. ?* E9 `
Kendall's rank correlation, Kendall等级相关! m7 N0 o/ S  j+ g) ?) K' {, j
Kinetic, 动力学
/ m. O4 a0 V: Q! t) z7 {( lKolmogorov-Smirnove test, 柯尔莫哥洛夫-斯米尔诺夫检验1 T7 @! E5 D& Y5 N; f% _: I
Kruskal and Wallis test, Kruskal及Wallis检验/多样本的秩和检验/H检验- {7 c- u6 ~( w5 ?- ~8 ?
Kurtosis, 峰度) V2 Y, }) B6 i/ H
Lack of fit, 失拟
. ~( r) K6 M, d: `4 ^Ladder of powers, 幂阶梯
. W3 I) C, r! ?9 {4 Y7 J7 `) bLag, 滞后0 e, \0 e$ ?  w! U$ n9 }
Large sample, 大样本. d; b3 H% s* \1 z/ D' w
Large sample test, 大样本检验
5 Y" c+ p$ G: ]5 W4 DLatin square, 拉丁方
, W- H* O. C/ ^- O/ \6 W5 ]$ j- e9 Y" [Latin square design, 拉丁方设计' K) q/ [7 V! O6 R6 C
Leakage, 泄漏0 _) f+ @4 e" a7 n! g% N" |$ U
Least favorable configuration, 最不利构形
% M' p- L9 e- r4 k6 P# {5 bLeast favorable distribution, 最不利分布
6 C2 v$ O% z* W6 {1 j) xLeast significant difference, 最小显著差法1 B! Y0 ~+ x8 M5 M
Least square method, 最小二乘法
5 }$ _# g+ y" ?/ DLeast-absolute-residuals estimates, 最小绝对残差估计
! s) S! Y) u' O5 i8 D' }9 }Least-absolute-residuals fit, 最小绝对残差拟合5 G" P% P' N+ [: E+ Z/ ]/ z
Least-absolute-residuals line, 最小绝对残差线& Q/ L1 l" R, T% k0 ^
Legend, 图例. I" S8 f5 i0 n) g5 b9 _0 O  S9 G3 ^
L-estimator, L估计量
/ G! l& ]5 N8 W$ TL-estimator of location, 位置L估计量
4 T& d$ ?$ b: n% x: ?* XL-estimator of scale, 尺度L估计量4 r7 P3 v8 k. t
Level, 水平
4 W2 V! _5 `* S# j/ zLife expectance, 预期期望寿命, d* K- `5 G8 v' h' J
Life table, 寿命表% K: r; O$ x+ u0 X0 ^0 \
Life table method, 生命表法
( Q+ g# C0 C5 \8 q! ?7 E! z  lLight-tailed distribution, 轻尾分布7 e' j5 M5 N& Z" J  I
Likelihood function, 似然函数# u. K' R2 ^7 z7 H% J4 k2 W
Likelihood ratio, 似然比
& j* P2 m( I$ s4 g6 \8 bline graph, 线图
4 `. _, c$ [6 H+ H+ HLinear correlation, 直线相关* j! M! n1 X( L8 [! F; N
Linear equation, 线性方程% {# ]0 ?6 J1 y5 p  [7 [  E" Z
Linear programming, 线性规划1 O0 j4 t/ K, B. {) X8 J
Linear regression, 直线回归& d& B  I2 H3 t8 o/ I, l4 Z5 V
Linear Regression, 线性回归; }5 m& i! ^! s0 W9 I. U* c
Linear trend, 线性趋势
; ?) `9 Y; ~3 h7 L  eLoading, 载荷 ' f9 m6 j! T5 h- b7 G  E
Location and scale equivariance, 位置尺度同变性8 W0 i9 K. d; g$ d, e
Location equivariance, 位置同变性& |: I' M4 G8 S& S0 A3 o% t
Location invariance, 位置不变性, g  _, L% Y9 A5 ~5 n& _
Location scale family, 位置尺度族
$ J" O7 e2 _/ D( eLog rank test, 时序检验 # x/ F' T' L* N, Z* |, k! L) `
Logarithmic curve, 对数曲线1 _6 r+ x8 y; P3 \7 r: ^
Logarithmic normal distribution, 对数正态分布; l. V; m- h2 D6 y1 S6 ?; n$ |$ m' ^
Logarithmic scale, 对数尺度' k/ m8 T: j* M& _8 {( c& k
Logarithmic transformation, 对数变换5 t4 I; `, S; ~8 i3 [% g" k
Logic check, 逻辑检查
5 ]5 @1 }* t4 d- Y) N( B" ^+ z! hLogistic distribution, 逻辑斯特分布8 W$ _- _7 @' Y
Logit transformation, Logit转换
7 S7 }; j0 d* |& k) _LOGLINEAR, 多维列联表通用模型
! D/ M8 B3 `5 n* l& RLognormal distribution, 对数正态分布$ ~& d+ L3 B# p  J' B* P4 O2 n
Lost function, 损失函数
4 \0 A, q3 q+ ?5 N/ y3 z1 ^3 sLow correlation, 低度相关' e- e, x" Y4 r" I+ _  T
Lower limit, 下限9 i8 Y6 ^, N6 B" L- w2 r
Lowest-attained variance, 最小可达方差
' s+ [; e) f' i- dLSD, 最小显著差法的简称3 ^  s& S. v9 C% d: C
Lurking variable, 潜在变量% B5 e5 p' R! N5 B. U
Main effect, 主效应3 F% t8 z! D' C+ X' {& W
Major heading, 主辞标目
2 p' z, B* Q# E, {! M4 i3 G5 CMarginal density function, 边缘密度函数6 G  V' W! {- n( a3 ^# \! W4 C
Marginal probability, 边缘概率
# r; \. r+ {, g* c( o$ `Marginal probability distribution, 边缘概率分布
0 ]# y7 W# j/ U% l3 uMatched data, 配对资料
9 V$ S& {" V4 f. x7 f+ NMatched distribution, 匹配过分布: s+ e0 a  R' D6 ]- _
Matching of distribution, 分布的匹配
9 O! G# V: F1 x3 VMatching of transformation, 变换的匹配) u7 s9 F0 M( O' b+ {
Mathematical expectation, 数学期望
6 M1 L) o7 l8 R- ]8 c8 [Mathematical model, 数学模型
2 a/ |  H: K, L& g/ PMaximum L-estimator, 极大极小L 估计量% G. \/ e7 E# x
Maximum likelihood method, 最大似然法
5 U2 }, H! l) c5 `7 j- l8 ZMean, 均数
5 R+ @( p/ c/ Y5 dMean squares between groups, 组间均方
' s" g4 \: }5 b, zMean squares within group, 组内均方
, _7 K5 K: a( Z; C' U, zMeans (Compare means), 均值-均值比较
0 t& A! S* u+ L4 qMedian, 中位数  j* t: b% u/ N2 ^& \1 V0 ]
Median effective dose, 半数效量3 p: u: q0 e# ~' X1 }, z
Median lethal dose, 半数致死量4 y- f5 e' U  j9 D5 K6 C
Median polish, 中位数平滑: f0 D- z- E; z5 A9 F7 r
Median test, 中位数检验  m6 ^( T7 D6 x2 n$ w, k4 Q2 B" m
Minimal sufficient statistic, 最小充分统计量, \, R. x5 V1 B  I1 P! J
Minimum distance estimation, 最小距离估计9 N% l1 [: u* e9 X' q. L
Minimum effective dose, 最小有效量3 U' N1 K6 T8 }
Minimum lethal dose, 最小致死量
/ T% s; ?+ ?! z" KMinimum variance estimator, 最小方差估计量5 j* |3 z! p5 E9 t/ e( w7 @" w
MINITAB, 统计软件包% j. {5 u% c/ b# O) P
Minor heading, 宾词标目' ~2 G: ]' l5 A. P6 T% p8 m2 |6 g! \
Missing data, 缺失值* o+ B" z8 o( P" d9 \' @
Model specification, 模型的确定
. N& j0 e1 p6 W' oModeling Statistics , 模型统计
4 j5 N- i) T8 F4 S% k2 WModels for outliers, 离群值模型+ h' R: S6 h) }# E, H5 F
Modifying the model, 模型的修正  K3 q( k5 F7 a6 S2 T$ S
Modulus of continuity, 连续性模
& ?$ f7 N( z4 ?# z  BMorbidity, 发病率
  l: |2 H$ s3 W( u7 `Most favorable configuration, 最有利构形/ m8 n5 q# V7 ?6 `0 Q( E3 z- P
Multidimensional Scaling (ASCAL), 多维尺度/多维标度
+ I* ^/ L/ v$ s# ^' W' nMultinomial Logistic Regression , 多项逻辑斯蒂回归
, W$ d" H, g, L5 {8 W  ~Multiple comparison, 多重比较) [8 E7 w& u% R# y( `2 x3 i
Multiple correlation , 复相关
- o. q, ]! ^, K- X1 `9 h' JMultiple covariance, 多元协方差4 F. y9 u: D# p6 t; [( J+ v9 z9 R
Multiple linear regression, 多元线性回归
, I2 e; j) a8 k) Z/ Y: f! HMultiple response , 多重选项
# ]6 E0 V0 ?. `7 Y  L6 DMultiple solutions, 多解
- C# x3 u- W, L& J" c; ZMultiplication theorem, 乘法定理" u% L! }: `4 m, H, _( R: n
Multiresponse, 多元响应3 u0 X5 q" o6 B5 U  Z
Multi-stage sampling, 多阶段抽样5 H; G$ w# v* U/ d4 k4 e$ @' q
Multivariate T distribution, 多元T分布% [+ p2 d% W; }; d# T6 o
Mutual exclusive, 互不相容/ ~* w4 @  N& x
Mutual independence, 互相独立; W9 \$ ^( W# S
Natural boundary, 自然边界% k, E* H" g4 K% W* H# m
Natural dead, 自然死亡5 E, F" |9 x" I5 O! P1 l
Natural zero, 自然零+ i3 S0 r8 Y2 ]
Negative correlation, 负相关5 T: Q+ p  p/ e6 n) S3 T6 R
Negative linear correlation, 负线性相关3 o' R( \9 S% c5 I$ u: d
Negatively skewed, 负偏
, w9 a- k9 _% N4 F/ z! k2 r; mNewman-Keuls method, q检验
& Y; U/ b" A5 Y$ I# A1 FNK method, q检验8 e" {. E, K3 ~( ~9 q: i
No statistical significance, 无统计意义9 ^( m7 E. n$ L9 c' L
Nominal variable, 名义变量; t. Y. k3 q* o% m2 S
Nonconstancy of variability, 变异的非定常性
* K; Q# _6 l3 {# ?& `% XNonlinear regression, 非线性相关' A9 p" @$ B7 [1 r: i- ^
Nonparametric statistics, 非参数统计) A  Z2 Q4 Z6 W5 H$ l/ X
Nonparametric test, 非参数检验
# {7 J1 V/ E4 V9 v# dNonparametric tests, 非参数检验4 Y$ d1 Q' x( m1 T
Normal deviate, 正态离差
% h3 n% e( ^( lNormal distribution, 正态分布
/ M, r9 y2 N+ F! c) o, _Normal equation, 正规方程组
1 @. Z4 h* B4 k  h- Q4 i, bNormal ranges, 正常范围: _. q* s/ ^4 ?7 y- C/ U* L, K
Normal value, 正常值
  O8 n! u: G& e- i& E# M& C3 d$ jNuisance parameter, 多余参数/讨厌参数
/ z1 ?8 S$ h" o* q% ENull hypothesis, 无效假设
+ p% _4 m4 i5 _/ G2 xNumerical variable, 数值变量  \  A' F! r5 Y* ?
Objective function, 目标函数8 l  L% `: d6 X% c+ p: i3 m& i/ X
Observation unit, 观察单位& q7 Z0 _  y- u0 ]
Observed value, 观察值' g% s( |% L. q+ a+ R/ S
One sided test, 单侧检验
+ L% Q" x( j7 H; eOne-way analysis of variance, 单因素方差分析
6 r3 o0 g8 p# K) `Oneway ANOVA , 单因素方差分析
" ]: r5 |4 K" n. k5 L; fOpen sequential trial, 开放型序贯设计
* `$ j$ b- \! {  k% o  e0 j7 c* b2 UOptrim, 优切尾
  g. M$ [4 P0 l+ C  Q! lOptrim efficiency, 优切尾效率
# p; }& M& E& [% N, B# ?3 JOrder statistics, 顺序统计量  p  R% o/ f3 r0 n5 o
Ordered categories, 有序分类6 ]. m) o7 c, R7 W- s- T
Ordinal logistic regression , 序数逻辑斯蒂回归+ @9 e6 @. u# W! p4 T) t$ K
Ordinal variable, 有序变量
" [+ E/ q) W/ n7 R2 c9 TOrthogonal basis, 正交基8 O3 l/ P3 ^8 n! U
Orthogonal design, 正交试验设计* E" l3 D" E) F% O# R1 ^7 u% w
Orthogonality conditions, 正交条件
) F1 z4 N0 Y6 b: _, @ORTHOPLAN, 正交设计
9 `; o1 D0 L, o2 A! B( }- UOutlier cutoffs, 离群值截断点
" C0 o" o' p! l# n5 [7 bOutliers, 极端值
/ x! H7 @# m% \  `! d4 b( OOVERALS , 多组变量的非线性正规相关 4 I# @5 `5 p0 \; Q3 M+ W
Overshoot, 迭代过度
$ [7 E7 s& K* o; ?Paired design, 配对设计
  q5 D- S1 b# h1 W* E( pPaired sample, 配对样本
0 j5 M1 H+ n, U( I* y1 MPairwise slopes, 成对斜率- ?, y. w4 h3 `/ C1 l1 T
Parabola, 抛物线/ N2 I( f& X& t, L. F6 @( J
Parallel tests, 平行试验- K* [" B1 b* h! z9 {% a3 `
Parameter, 参数
- y7 ?; T6 g# S& Z& W. jParametric statistics, 参数统计
) K& Q8 e  `4 d3 W" q  i+ rParametric test, 参数检验, X, @0 t+ E2 w6 ^. \/ {
Partial correlation, 偏相关
  k; L1 s% P% ~4 a9 i; |Partial regression, 偏回归5 U( S& n" h8 z, P) z( |
Partial sorting, 偏排序
2 _9 a5 k4 d2 C; WPartials residuals, 偏残差
, @% D3 K2 N3 }6 y9 c6 RPattern, 模式" e! V, q( @7 E# |9 d: S
Pearson curves, 皮尔逊曲线
# N9 v5 Y7 D" n# t% K: q- zPeeling, 退层
, T7 L$ {& k5 oPercent bar graph, 百分条形图# R4 T! y; X! x9 T: Z
Percentage, 百分比% }" |: s. g/ D- j% C
Percentile, 百分位数
/ S) d' |" L0 r. f6 gPercentile curves, 百分位曲线) V8 O' [' V: D0 g* k3 t' R5 K
Periodicity, 周期性5 V9 @0 K$ `0 s/ }2 d
Permutation, 排列9 k7 K; W# {" V- i5 c
P-estimator, P估计量
) i9 w9 ~2 o0 z3 D' l+ H) IPie graph, 饼图
) ?# @6 R+ O/ Q- `# i" n6 d1 C1 ^Pitman estimator, 皮特曼估计量
6 s; `1 Q/ Z, a) `9 m) U" h4 W/ YPivot, 枢轴量+ }8 C: C: y. r4 I; s8 l
Planar, 平坦
% f4 P- U5 u# uPlanar assumption, 平面的假设. l# e/ T% A' I6 E
PLANCARDS, 生成试验的计划卡  w8 {  J, G- P
Point estimation, 点估计+ b6 k4 `- [/ h6 s, ^, j
Poisson distribution, 泊松分布$ o- ~. R# o( W. c
Polishing, 平滑
9 W  x7 d, z  H5 A0 vPolled standard deviation, 合并标准差
0 b. z6 u7 I% B. T5 L7 yPolled variance, 合并方差8 y. a7 a& u. {% c! ]
Polygon, 多边图! F' A( t' S$ Y) y! F( c* p
Polynomial, 多项式- `$ J# `; U' o  E
Polynomial curve, 多项式曲线) Z# E' E" f; i
Population, 总体, k9 \$ j1 z4 ]$ B+ K$ v
Population attributable risk, 人群归因危险度2 _# k0 ^$ D7 ~: Y* ]
Positive correlation, 正相关4 f3 W' |7 v7 y& H/ x6 `& c6 Y. H- K
Positively skewed, 正偏
* g! T# o% t! x: j7 bPosterior distribution, 后验分布
" |+ ]- U  i" J! p2 ^1 \Power of a test, 检验效能+ |5 f1 f. |9 R" w( V' ~
Precision, 精密度7 v4 {8 w, D4 }: X) h
Predicted value, 预测值; `. `( t0 a; y7 T8 J- d2 R
Preliminary analysis, 预备性分析/ X) y( l  P0 ?+ }; ]
Principal component analysis, 主成分分析0 S0 u0 H5 t4 Z. m9 v
Prior distribution, 先验分布
' _: E3 w. f" q1 F3 }+ FPrior probability, 先验概率; D+ n6 \  I# {! ^) {+ @+ k( F
Probabilistic model, 概率模型
) E, j, `- D5 h$ s. n) A" Vprobability, 概率. V7 G# z  _% w8 p' @% b7 U
Probability density, 概率密度) i. v2 }# j7 ?9 k  F! l9 @6 F" K
Product moment, 乘积矩/协方差9 e: A3 G, ~+ X7 t
Profile trace, 截面迹图8 Y) p4 v  V' l
Proportion, 比/构成比
+ r# g" \5 G$ o+ c6 a$ H$ JProportion allocation in stratified random sampling, 按比例分层随机抽样
5 V: o: g' \. x) a; ?' V! h: WProportionate, 成比例
7 y6 S0 r8 `& Z9 m& yProportionate sub-class numbers, 成比例次级组含量6 L4 ]+ n% Z# Q# Q& n
Prospective study, 前瞻性调查
! t! `  C0 L7 R) Z1 w$ k2 aProximities, 亲近性 5 C( O. v8 j2 k( H; G4 _
Pseudo F test, 近似F检验
. I$ Y2 H; O/ |0 _! UPseudo model, 近似模型' o/ H# m- V& M8 q! M, V+ X
Pseudosigma, 伪标准差# b9 B4 J4 [8 j% m; K. f
Purposive sampling, 有目的抽样
- j9 P. |; Y1 q" |QR decomposition, QR分解
6 |" V3 H3 R/ g# Z  Q; Q& FQuadratic approximation, 二次近似
% D3 H& D% T1 T4 r, f# FQualitative classification, 属性分类1 l4 a' {* r" ~( B
Qualitative method, 定性方法" i$ b+ V0 j/ ]4 d$ t: i# O1 ?
Quantile-quantile plot, 分位数-分位数图/Q-Q图- r: H/ E$ M2 ^3 O
Quantitative analysis, 定量分析
7 T7 w/ [: v) L" {/ M. L5 _  CQuartile, 四分位数( q( J+ E& [5 W
Quick Cluster, 快速聚类
4 b$ @# n. ]3 @8 X$ [Radix sort, 基数排序( Z% R* l; R: E  |
Random allocation, 随机化分组
, P9 H; N  D5 ^- L" ~! y, aRandom blocks design, 随机区组设计
* Z0 q+ U" X. H7 {. \: VRandom event, 随机事件
, c9 M% z* N% n# ?) z" f, F, oRandomization, 随机化
& ?. l) g& T2 T4 D9 R& t+ YRange, 极差/全距
; {- P+ }3 z2 M$ ?1 u( wRank correlation, 等级相关! {2 L2 x* }  A) B2 O
Rank sum test, 秩和检验
5 E* B+ E, F& mRank test, 秩检验  M. y0 s, a& j8 o/ M1 d
Ranked data, 等级资料9 X0 V, y) I: ^
Rate, 比率5 `4 o( q/ b) N4 w
Ratio, 比例& H$ Z+ i) |3 ^' d/ i: S, U% d
Raw data, 原始资料
! C( d8 g( G+ Q  ]2 ORaw residual, 原始残差9 h. X# J% ~9 t5 q* S
Rayleigh's test, 雷氏检验* g' }: u# h% E5 f/ r
Rayleigh's Z, 雷氏Z值 . ~5 q" D* ~' w: v! j! k% O- Z
Reciprocal, 倒数9 w& K1 {5 H$ h
Reciprocal transformation, 倒数变换, w4 R6 V; Q1 Z# W/ N3 t2 q
Recording, 记录+ }: F* C  H2 c
Redescending estimators, 回降估计量5 P; b: j; [1 H' |  s! D) y; p
Reducing dimensions, 降维, x( F$ h. N+ a; g
Re-expression, 重新表达) O  R# d- Z' R/ [
Reference set, 标准组' e; \1 C) {+ ^$ y9 M9 M$ B$ `
Region of acceptance, 接受域  U" C( Q4 ^; b. D! s
Regression coefficient, 回归系数" W% s4 r- C. R5 F7 j7 U" k5 r
Regression sum of square, 回归平方和
1 V: U* R9 p* w; T" TRejection point, 拒绝点
6 M3 e1 n/ i' \" a* [& M& aRelative dispersion, 相对离散度5 g$ g6 v& V7 A; g; Q/ k
Relative number, 相对数
8 G; V. S) T3 C3 |  e2 KReliability, 可靠性
+ s8 D% z1 D* U+ d* \+ _Reparametrization, 重新设置参数
+ b. ?' [% m( UReplication, 重复; {- S  \) _% S/ D7 J) {4 t. H% j
Report Summaries, 报告摘要4 `7 `" L# b7 w9 q
Residual sum of square, 剩余平方和$ d- p7 |6 \, w* R
Resistance, 耐抗性
5 a+ {& u1 e1 c, UResistant line, 耐抗线
% }7 o; q, A6 w+ U& B; a9 O$ n5 sResistant technique, 耐抗技术; n7 I$ t. A* N+ |. L; N4 L3 G4 ?
R-estimator of location, 位置R估计量3 g" f# H9 X( B7 {
R-estimator of scale, 尺度R估计量
4 w6 w9 u5 O( @' \" mRetrospective study, 回顾性调查
2 S' T# v& l, NRidge trace, 岭迹
" K5 {% y3 ~# F3 M5 URidit analysis, Ridit分析
) M+ F5 P. K% g" URotation, 旋转; D% m) ~& T6 r- N; ?+ c
Rounding, 舍入  N1 Q: Q2 u- Y! C: f( A
Row, 行& e2 r+ {# q5 a
Row effects, 行效应
3 O0 c0 c4 f: rRow factor, 行因素% y, ~' u5 @5 F9 _9 j, p
RXC table, RXC表2 l! B/ D$ P+ L/ T- A( h
Sample, 样本
! R8 {1 c. H& VSample regression coefficient, 样本回归系数
$ L* I6 m' }8 A0 f( E. w6 E- Z. R( {Sample size, 样本量- F9 {3 L% F5 F% _1 J8 P
Sample standard deviation, 样本标准差7 E. g& F4 A) F% j/ \7 D, P
Sampling error, 抽样误差3 o+ t8 E6 j. |2 N5 {# X( `
SAS(Statistical analysis system ), SAS统计软件包- Z3 o; j  y2 q' d
Scale, 尺度/量表
* H- q4 ]/ `! m; @9 [Scatter diagram, 散点图
; @; p! |' ^. c. n! I# cSchematic plot, 示意图/简图
' T8 s% b2 p: v# y8 k: Q8 U! \Score test, 计分检验
4 T0 x+ _" Z' b7 ?7 HScreening, 筛检, f7 l9 Z3 }! Y
SEASON, 季节分析 9 i) Q0 H/ u( x
Second derivative, 二阶导数. t4 Z/ k3 O7 R4 {/ E# A
Second principal component, 第二主成分. d: J9 m  T' S3 b
SEM (Structural equation modeling), 结构化方程模型 , T  d2 V- e1 D% a- i# C
Semi-logarithmic graph, 半对数图, {% U" N  X: D3 o
Semi-logarithmic paper, 半对数格纸7 @9 G, c& B' s$ R1 q% g6 Z
Sensitivity curve, 敏感度曲线
1 _0 @! h$ i7 RSequential analysis, 贯序分析
( k( T$ v# y( B& J7 k$ I* aSequential data set, 顺序数据集
4 T6 M1 G) S' t& s  l: |' ]Sequential design, 贯序设计* g5 _* q5 X' l7 t
Sequential method, 贯序法2 O( h) m: {6 y. t
Sequential test, 贯序检验法
5 `# B$ S7 B' I) j2 ^Serial tests, 系列试验
' ^7 S3 k% b9 x2 E) U2 [Short-cut method, 简捷法 # o5 C+ v" q& z  w- U  W( N
Sigmoid curve, S形曲线! x* B4 ?' E& _2 }7 z* Q
Sign function, 正负号函数
+ Q/ l$ Q5 Y# U: A) t2 K, uSign test, 符号检验7 F" {% @7 E/ E0 V; n+ N
Signed rank, 符号秩- L7 S% W$ L, n, t5 ^7 j
Significance test, 显著性检验
5 l" o3 P) o2 s; X! m: ?# nSignificant figure, 有效数字
. n5 S. T, o4 L) T9 t' a; DSimple cluster sampling, 简单整群抽样
8 p$ d3 n. S: CSimple correlation, 简单相关
5 [. Z9 A6 S! ^* @3 P6 N+ H9 ]Simple random sampling, 简单随机抽样4 N- I! j4 |$ Y7 l+ l. B* Q# {
Simple regression, 简单回归
" q5 s- D# H. c9 I, f6 L# Tsimple table, 简单表  P) o2 i! A( O5 i1 a+ p  K( x
Sine estimator, 正弦估计量5 Q8 ~1 g! L- g# x
Single-valued estimate, 单值估计5 t* w$ V+ N) O/ O! f
Singular matrix, 奇异矩阵
9 {% J- m% J2 ]- ]  QSkewed distribution, 偏斜分布
' z3 Y+ e: e2 K. P) OSkewness, 偏度
6 ~+ t% y9 j$ f: O/ F0 kSlash distribution, 斜线分布4 g3 F/ w  P/ b2 a) {( B* v; \
Slope, 斜率# ^3 r5 G( M6 y  ]! B& M
Smirnov test, 斯米尔诺夫检验/ W+ w) `; \5 e& f: x& A
Source of variation, 变异来源: p# Q- @' ^; _3 H* g2 O
Spearman rank correlation, 斯皮尔曼等级相关0 z0 w6 [- b' c5 [: F' g4 H( D+ L
Specific factor, 特殊因子
9 B- S- A2 A& s0 f( P7 v: DSpecific factor variance, 特殊因子方差
7 d2 g# v- f7 G* n- iSpectra , 频谱, |& y6 u$ t( l4 z+ m- Z( x
Spherical distribution, 球型正态分布
' B' b7 a6 N) j" zSpread, 展布
' o0 d) M  m' _; _4 U- r6 j: WSPSS(Statistical package for the social science), SPSS统计软件包
$ P5 f" d: Y0 |Spurious correlation, 假性相关
* G7 R- A  `$ \$ l& {/ oSquare root transformation, 平方根变换% F% t- t1 a, F
Stabilizing variance, 稳定方差! g* M' e, _3 I" C7 J
Standard deviation, 标准差
6 V8 _2 d0 \7 ~3 QStandard error, 标准误' |9 _4 P$ o5 S! }  u& Y0 g' p8 K
Standard error of difference, 差别的标准误. O7 u- i( r" C5 |( V: B
Standard error of estimate, 标准估计误差+ J" v% F/ V. O' Z( y$ {9 D
Standard error of rate, 率的标准误2 S2 b* v; ^) ~$ V# Y, K  {
Standard normal distribution, 标准正态分布
3 _( j4 p2 Q' u- Z2 gStandardization, 标准化1 m+ M: L, \$ @7 V& Y
Starting value, 起始值- c; ]2 C3 J9 j1 P* s
Statistic, 统计量
% g4 N) M* H- }% aStatistical control, 统计控制1 Y# X0 g% V' \/ x* c9 f" V
Statistical graph, 统计图( a# q4 L$ P. B, }
Statistical inference, 统计推断
5 B2 M/ p. M7 AStatistical table, 统计表
2 p" S- h% M- aSteepest descent, 最速下降法/ v3 R3 k+ |9 M3 h/ f& R0 g+ g
Stem and leaf display, 茎叶图
$ `& ~0 i- J( HStep factor, 步长因子  P4 p4 z9 l& }$ i5 u( d  u
Stepwise regression, 逐步回归# S: J9 ~4 e3 |
Storage, 存
* h& M+ M4 R. A; b9 u: Q# D( ^Strata, 层(复数)) u( X, V; _. q* \0 a
Stratified sampling, 分层抽样/ C" W- h5 N9 \6 j
Stratified sampling, 分层抽样
1 p. R9 @. L8 G2 Z0 NStrength, 强度2 Z+ L8 y- [6 a. k+ u
Stringency, 严密性
. w/ }# r2 U  K( I3 `8 U0 S$ q" VStructural relationship, 结构关系
+ h4 m3 k( [5 ~2 e; MStudentized residual, 学生化残差/t化残差
, ^/ F7 l! e+ {Sub-class numbers, 次级组含量3 \) P, D% y3 M5 m
Subdividing, 分割8 z0 b, r- p4 A6 d, H  u) I
Sufficient statistic, 充分统计量, k4 v6 {3 H- i8 v5 [7 Y0 n
Sum of products, 积和
5 H5 b. y) x) m  U' q0 x& QSum of squares, 离差平方和
8 H1 ^* U" @, X' V  Y* _2 L: BSum of squares about regression, 回归平方和; i  V9 y$ U# F' s. V  F. }' W
Sum of squares between groups, 组间平方和$ ~8 b& U# x/ ^! _( o; o! ?4 O
Sum of squares of partial regression, 偏回归平方和$ z* Q# _' Z. Z8 ?8 c. B
Sure event, 必然事件# k  u1 u) X% [  d1 w* i$ F
Survey, 调查+ c: ]" a) R7 q# c0 R% B: q
Survival, 生存分析
  r* Y; P" ~& ?2 {0 ^: p. [0 p3 ?Survival rate, 生存率( @3 O7 Z! h. @. F/ V
Suspended root gram, 悬吊根图
9 g: Y9 H( d6 p+ _3 z3 ZSymmetry, 对称
# @& f/ p; X1 Z6 W3 Y. ~Systematic error, 系统误差
: B- h$ D" }& \; A9 v1 SSystematic sampling, 系统抽样
7 v  s+ u; E2 }( d% ~+ CTags, 标签
9 w! F  U; {! e) D0 zTail area, 尾部面积6 W! M2 j' L3 W' R
Tail length, 尾长: B" J& I' R2 @1 s% A
Tail weight, 尾重
+ D! Y; Z9 o6 s: }+ ]Tangent line, 切线
7 p$ u& Z8 k: S2 n- |9 qTarget distribution, 目标分布
. ^5 O' P6 _1 k( U$ R/ K! _Taylor series, 泰勒级数
. W: q' x4 t3 ^4 tTendency of dispersion, 离散趋势! V5 |' c" f% b; K+ t% [
Testing of hypotheses, 假设检验
0 K" U4 a  q# e3 P9 \Theoretical frequency, 理论频数8 ]- {& ?) E! j6 E! Q4 E1 f
Time series, 时间序列3 Z: ]2 ?; ~' S6 G3 P
Tolerance interval, 容忍区间' k4 o6 ^* b0 a# e% n% e
Tolerance lower limit, 容忍下限- S/ i; A7 e8 V: b7 [
Tolerance upper limit, 容忍上限
5 J3 W' G" P  s' c9 X3 ]) {+ {4 c0 qTorsion, 扰率
5 b! F8 i% W8 q# dTotal sum of square, 总平方和
8 s* m. A* G* WTotal variation, 总变异; i* j& v- o0 O5 o' ]1 V/ [
Transformation, 转换3 U2 [3 n8 C5 \8 A1 b
Treatment, 处理  S' B: E: H; b1 i# D: r0 t
Trend, 趋势- B  n7 |# q; F" ~. W
Trend of percentage, 百分比趋势# V. L0 u3 K: ~
Trial, 试验
. y2 @' u3 d. E( v3 [( BTrial and error method, 试错法7 ^$ |* C6 F! F$ P
Tuning constant, 细调常数
0 K6 Z9 Y" T7 W0 j3 X5 _/ _Two sided test, 双向检验
  ~% T% G. j8 B+ {2 ?+ I  g8 GTwo-stage least squares, 二阶最小平方) v' }1 y4 S% s" W0 e5 p% e- z7 {1 l
Two-stage sampling, 二阶段抽样8 |: p, ]2 M; ~
Two-tailed test, 双侧检验
: a7 a; Z: B6 P/ O% o3 BTwo-way analysis of variance, 双因素方差分析
/ s% g: O  w+ m9 ~9 Q( M7 \Two-way table, 双向表
& O, p8 X; k; ?+ m# k, f9 i+ |6 E# u: HType I error, 一类错误/α错误$ t3 ^# T7 Y4 D+ k  |
Type II error, 二类错误/β错误
, D& f5 I: L2 {2 v8 iUMVU, 方差一致最小无偏估计简称0 q2 O+ F3 v3 k  {! D" K
Unbiased estimate, 无偏估计( `' M: ^8 ]0 W
Unconstrained nonlinear regression , 无约束非线性回归
2 i' G( H6 s. d) D  gUnequal subclass number, 不等次级组含量) S9 m+ M" x1 d) L1 W" Q$ P
Ungrouped data, 不分组资料
% N) [$ U6 I: s% x6 }( x% Y8 G; IUniform coordinate, 均匀坐标
* U7 Z6 j: t- u  \, cUniform distribution, 均匀分布* d$ O; {+ E" H' C( g7 w
Uniformly minimum variance unbiased estimate, 方差一致最小无偏估计
: Q$ y2 B* L8 B/ W7 sUnit, 单元- H+ d* Z  }, e; ^0 w+ |  v
Unordered categories, 无序分类
" Z1 k) ~7 s) q$ IUpper limit, 上限
0 w8 B3 U9 d+ a- @/ H' ^+ Z) aUpward rank, 升秩( Q- E# T: w# Y5 {5 y$ h
Vague concept, 模糊概念0 J/ S5 q1 F4 u6 D
Validity, 有效性
: s7 n  Y7 m1 e/ F. EVARCOMP (Variance component estimation), 方差元素估计
" x0 H" J  F4 R" |  Q' X( j6 KVariability, 变异性
1 \9 e, }- D7 a; `: q/ UVariable, 变量6 @" P3 \  V3 [- {1 J0 m+ V9 U! e
Variance, 方差
5 k% j! o6 o- V9 y& P7 l1 zVariation, 变异% l0 o% c" v' t6 B
Varimax orthogonal rotation, 方差最大正交旋转& l' m# h' G# n
Volume of distribution, 容积
! p* R" y) E3 nW test, W检验
" U- u6 R$ }+ r+ X9 K/ fWeibull distribution, 威布尔分布
, A9 ~: `4 S6 S3 C3 E5 Y/ KWeight, 权数/ B; f! t, |+ k. \
Weighted Chi-square test, 加权卡方检验/Cochran检验
- Z* g+ a% v2 V: |$ z" G* OWeighted linear regression method, 加权直线回归# Y" X, v& L1 D! d9 \
Weighted mean, 加权平均数
/ ]; n' r3 A; p2 mWeighted mean square, 加权平均方差
. `# k& w) A( J# [5 m, W+ ?Weighted sum of square, 加权平方和
! ]+ I+ K- ~  a* yWeighting coefficient, 权重系数
% D4 a" P1 L4 j9 AWeighting method, 加权法 ; F9 i' _7 q# [# i2 C( d- h
W-estimation, W估计量
: F0 ^% [) T& H" t% DW-estimation of location, 位置W估计量
+ d7 B/ I1 _1 U3 MWidth, 宽度
7 ~, @1 q. J4 G4 j: u0 L5 TWilcoxon paired test, 威斯康星配对法/配对符号秩和检验
6 C. K6 t' b6 ~  p6 _5 H: YWild point, 野点/狂点, k% D) {; [1 _1 C  ~8 ?7 n( j0 h
Wild value, 野值/狂值
% f9 u- d, `7 t& IWinsorized mean, 缩尾均值
1 q# S5 N3 Y. iWithdraw, 失访
  Z: @+ L7 P0 C- C7 l6 b4 o$ a1 {& A* ~Youden's index, 尤登指数
1 z& }% I+ i1 n8 U# |Z test, Z检验
4 M7 H7 i, P) U8 z+ NZero correlation, 零相关. A8 h( E) C# U* y
Z-transformation, Z变换

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有账号?注册会员

x
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册会员

本版积分规则

QQ|李越老师直播间|清流社工网 ( 苏ICP备19044186号-1 )

GMT+8, 2026-1-7 15:52 , Processed in 0.052448 second(s), 7 queries , File On.

Powered by Discuz! X3.4

Copyright © 2001-2023, Tencent Cloud.

快速回复 返回顶部 返回列表