|
|
Absolute deviation, 绝对离差$ z' {. C% C) A( J) s3 D) g0 c
Absolute number, 绝对数: \7 @/ c2 u, O+ {" O" B
Absolute residuals, 绝对残差
* g% T$ [7 g7 C" w8 GAcceleration array, 加速度立体阵7 W: v1 G8 R% k" ?+ a% h
Acceleration in an arbitrary direction, 任意方向上的加速度( I: E; T0 N7 Q3 j
Acceleration normal, 法向加速度1 K) B& P9 p" u% Z' g
Acceleration space dimension, 加速度空间的维数7 W8 u. P3 p7 }, a
Acceleration tangential, 切向加速度' l8 N" c! U3 Z1 k, c8 l9 J
Acceleration vector, 加速度向量
p5 h0 m4 \; O' q- J0 W) GAcceptable hypothesis, 可接受假设- T0 F1 h% u: E& k0 M
Accumulation, 累积
! A9 U9 J- T* _Accuracy, 准确度7 D2 O: H' \0 Y2 f
Actual frequency, 实际频数! x" A1 M" P: g4 U% b/ @
Adaptive estimator, 自适应估计量
1 r2 H g* K* RAddition, 相加
; N. I" \) B* ~$ @Addition theorem, 加法定理
# A8 F+ b# x$ ~% m+ U6 nAdditivity, 可加性
: \6 ?% Y8 X3 K# u; H/ g& b8 M4 s6 HAdjusted rate, 调整率
7 _6 f7 Y: i% T( c( {- |, m mAdjusted value, 校正值5 u( R6 p2 u K2 Z- L8 F9 T1 U8 c; E
Admissible error, 容许误差( e8 v5 D! N5 ^( q/ Z+ N, ]
Aggregation, 聚集性5 {" ~) b$ |( U
Alternative hypothesis, 备择假设
" P& c3 S- \" iAmong groups, 组间
0 {6 v! j4 G# R% m! P2 O0 fAmounts, 总量" {1 e( o3 }0 H9 E% H4 ? r5 a. s6 d
Analysis of correlation, 相关分析
. o) h4 S. r8 W* i* e VAnalysis of covariance, 协方差分析# ]1 R$ i) N* A- O3 g" @" p
Analysis of regression, 回归分析
' N; d: N( p% R% VAnalysis of time series, 时间序列分析
- E7 _# [4 ^. [7 e: {. iAnalysis of variance, 方差分析, y* _2 v2 I; P) m# c, C" X
Angular transformation, 角转换
$ ]3 z8 P% |: ?% U/ H5 mANOVA (analysis of variance), 方差分析7 h' L" j" t8 z# U7 @3 [& r5 R8 `
ANOVA Models, 方差分析模型
: l. X' A3 K' D: l0 n) C0 cArcing, 弧/弧旋
2 e3 w3 u6 p& [2 [( s. b6 z; ^+ ZArcsine transformation, 反正弦变换' v( A: C& Q6 I
Area under the curve, 曲线面积
. R; X/ V& [* e1 V% QAREG , 评估从一个时间点到下一个时间点回归相关时的误差 9 { n0 G; n# G m
ARIMA, 季节和非季节性单变量模型的极大似然估计
( f1 p9 }1 ^- z/ n6 NArithmetic grid paper, 算术格纸- U9 f S( O/ h. P
Arithmetic mean, 算术平均数4 N6 {/ i+ [/ }( c
Arrhenius relation, 艾恩尼斯关系
: s( o# \1 T! _- v6 V1 Z+ ^Assessing fit, 拟合的评估
+ d) j- i- I+ oAssociative laws, 结合律1 r/ N8 ^- j1 o
Asymmetric distribution, 非对称分布
$ I( i8 d7 ^& [/ rAsymptotic bias, 渐近偏倚! @& q2 ?. ^0 y% ?- }2 F! ?: G3 B. `
Asymptotic efficiency, 渐近效率
- k1 c% N5 \( iAsymptotic variance, 渐近方差
9 ^3 o) E* k" G' n! J; }Attributable risk, 归因危险度3 G1 n( N7 D9 O+ y3 h% D% P
Attribute data, 属性资料
6 J# i7 j/ k w) ^Attribution, 属性
% q' W6 v1 Y- K; H: h3 G0 yAutocorrelation, 自相关
8 a5 Z# f7 D2 i7 N2 h9 s$ NAutocorrelation of residuals, 残差的自相关
2 |" c, C# ]) B9 Q, }8 X2 ~( rAverage, 平均数, M1 [$ {+ {: t* P) g
Average confidence interval length, 平均置信区间长度; C; l5 D" R! i. T* F6 n
Average growth rate, 平均增长率
' H4 V- f3 m; Y9 ^Bar chart, 条形图
, _( t7 Z" @! k9 y* s" ~; T- _. e( ]Bar graph, 条形图1 d( K% y& F1 e
Base period, 基期3 h* ?$ i& K# W: X) M
Bayes' theorem , Bayes定理+ u. j: g- F4 U5 T
Bell-shaped curve, 钟形曲线: J4 O" E2 C0 ^/ X n5 M
Bernoulli distribution, 伯努力分布3 z: X' h4 M9 p# \4 n& W, K, E
Best-trim estimator, 最好切尾估计量+ A7 j' X |5 Q% }: L; p2 f
Bias, 偏性% H4 M( [1 z0 H' e/ c
Binary logistic regression, 二元逻辑斯蒂回归
+ f9 [ W+ g+ ]4 H9 oBinomial distribution, 二项分布
6 n, [: D- c! X& y' V4 L# @ pBisquare, 双平方% D1 @9 J. m5 n x7 b6 N% ~
Bivariate Correlate, 二变量相关
0 M# a+ E1 l0 B. O0 ^Bivariate normal distribution, 双变量正态分布4 n: P: A! H M' k( P/ ~9 x; C
Bivariate normal population, 双变量正态总体& j: k3 U) P$ F% e% ~# ?
Biweight interval, 双权区间9 [* G& u7 q+ z
Biweight M-estimator, 双权M估计量
1 z( |5 c+ A. ?1 sBlock, 区组/配伍组# }# s4 V, I5 M6 }
BMDP(Biomedical computer programs), BMDP统计软件包
( U) h8 @ T) t/ |& v' ZBoxplots, 箱线图/箱尾图% A% B0 y% t( u3 c( a
Breakdown bound, 崩溃界/崩溃点: `9 V5 e$ K! D' g" Y
Canonical correlation, 典型相关
1 U5 b" M z( l% ~5 S2 d' Y3 MCaption, 纵标目
3 s& C& S9 m( B* u2 I/ `# QCase-control study, 病例对照研究* h1 H4 o5 N. U" v# y6 {2 Q% O
Categorical variable, 分类变量
8 I7 I* l5 i- Q! mCatenary, 悬链线% c4 _4 @8 f) t. ]: y& w
Cauchy distribution, 柯西分布
( u4 t) v6 e" ` CCause-and-effect relationship, 因果关系
1 R* S% C) u# @' PCell, 单元* N5 A( a. K, u" M
Censoring, 终检
' U5 J& I& Q7 ^( j7 H; X; [Center of symmetry, 对称中心
# U8 I8 N I1 L; R ^. S: C5 ~* JCentering and scaling, 中心化和定标' ]8 [& X6 b- F" W; E
Central tendency, 集中趋势
3 L% u! s& x! ECentral value, 中心值
+ ]. j8 A5 a7 q3 a8 }$ p7 SCHAID -χ2 Automatic Interaction Detector, 卡方自动交互检测
% B) D- c8 S! o- {3 P* j: F: \Chance, 机遇
- m0 k! U5 L FChance error, 随机误差
# U/ S/ u4 e+ d6 g C- O$ Q2 d1 cChance variable, 随机变量
, S. K2 a4 S. ?% B: yCharacteristic equation, 特征方程' o3 `$ w6 | X/ M
Characteristic root, 特征根6 M6 p$ a( x5 k9 z$ y/ U0 ~+ X
Characteristic vector, 特征向量" q q7 R/ n+ c6 i
Chebshev criterion of fit, 拟合的切比雪夫准则* `6 g9 J$ F9 W# h
Chernoff faces, 切尔诺夫脸谱图) V2 L: _2 K2 x- v! m: F
Chi-square test, 卡方检验/χ2检验
: {* | }" I" PCholeskey decomposition, 乔洛斯基分解# d0 v- b5 V f9 s- I; ]8 }
Circle chart, 圆图 " a3 P; Y7 S, V! a9 S
Class interval, 组距
/ ^& _+ e# e) d0 TClass mid-value, 组中值
4 B4 ]( a8 U6 x8 _Class upper limit, 组上限
! i* T( X1 J G, g7 \. \" bClassified variable, 分类变量' _! B$ ^1 X) I$ a6 d! y. D
Cluster analysis, 聚类分析
7 Y7 {: T% e. v$ F- ^Cluster sampling, 整群抽样- w# o. ~, D) Q" t
Code, 代码/ T! l2 ]4 S) ~7 o7 q( O+ m+ |0 d
Coded data, 编码数据
0 _9 E: p. m1 a* sCoding, 编码
1 {/ p3 x" V# QCoefficient of contingency, 列联系数8 l0 \3 t% @% ^' G; E! h: T0 _
Coefficient of determination, 决定系数% z/ ~4 i" I8 e8 }/ I9 h( |
Coefficient of multiple correlation, 多重相关系数# {3 q3 v) X' \. e# x, c
Coefficient of partial correlation, 偏相关系数; L6 Q! o4 b. L1 ~# I6 |2 L' o
Coefficient of production-moment correlation, 积差相关系数
5 L6 H9 y& V9 L9 s5 ^" F! y* ICoefficient of rank correlation, 等级相关系数9 n4 \, \7 L& b( w' H/ h; Y& j X
Coefficient of regression, 回归系数
* y: L1 g! d! D$ y$ M# G$ ECoefficient of skewness, 偏度系数
D' g, Q& @( _9 y, qCoefficient of variation, 变异系数, `; G; M; ^! s, d) Z7 {/ ^, ~
Cohort study, 队列研究
. W- O3 J. C0 qColumn, 列# d' G5 X+ \6 G. B1 F2 N: g
Column effect, 列效应( a4 m7 J+ }- m! j" w& Q
Column factor, 列因素% s7 g: t5 S- [0 D8 W% Q* V$ b
Combination pool, 合并
7 L X' V7 J! y+ C' n2 ECombinative table, 组合表
/ s+ K3 J3 j6 o9 U/ r* D( JCommon factor, 共性因子 ?3 y l8 q7 [% o
Common regression coefficient, 公共回归系数
% G- X* v; `/ LCommon value, 共同值
5 Y2 q4 e; k# q h kCommon variance, 公共方差
- u- \, [* a0 T6 `, lCommon variation, 公共变异+ n5 Y, x, K+ G3 j1 x3 H6 w
Communality variance, 共性方差( B) P- H5 H* o. h2 a8 U: y
Comparability, 可比性0 _0 L n; f- ]! x5 c' b8 F
Comparison of bathes, 批比较
1 X' ]' r3 i7 \0 UComparison value, 比较值* V3 v; B. ]6 Q" U
Compartment model, 分部模型2 x$ k- E+ Y& \
Compassion, 伸缩
9 W5 A7 O6 I9 \' @0 UComplement of an event, 补事件
- ]8 t$ W0 W6 @Complete association, 完全正相关
0 [1 f/ r: J: ]% F; G1 pComplete dissociation, 完全不相关
: r& _6 C ^* r( O2 J& g4 ?Complete statistics, 完备统计量
& o7 e* K* |, u* C: u( u% O- ]4 }Completely randomized design, 完全随机化设计
: A- P* I3 o- R: b) @) WComposite event, 联合事件- z1 V- W. k" u' k
Composite events, 复合事件
) l+ E3 C4 X9 W7 \0 {: HConcavity, 凹性4 k/ n( [5 I' Z) z& N
Conditional expectation, 条件期望
3 ?* E( a- F0 P! M. g; I* @Conditional likelihood, 条件似然7 d Z/ y- ~. _, o J
Conditional probability, 条件概率
( ]& y6 D+ q0 M3 T$ c: }Conditionally linear, 依条件线性
. W( o# A: s8 a* ^4 rConfidence interval, 置信区间6 \9 I1 G$ v; ~! A3 W; \4 [, o& }
Confidence limit, 置信限
8 C- o& S3 v: S; ~, x5 B: ^Confidence lower limit, 置信下限
: u, H7 \, \5 {5 YConfidence upper limit, 置信上限
: h; M$ Z( V' AConfirmatory Factor Analysis , 验证性因子分析: T6 S/ i( a6 m" N% B b
Confirmatory research, 证实性实验研究
, K9 U, r0 @% v7 K+ a- o; jConfounding factor, 混杂因素' s2 |, g, C2 C' N) U
Conjoint, 联合分析# n5 h R1 U* o2 Z1 M3 k
Consistency, 相合性
% O( j, x! i4 K+ f7 m3 SConsistency check, 一致性检验" `# U1 x% k- i) [, w
Consistent asymptotically normal estimate, 相合渐近正态估计1 G# {0 f4 V' ` F E9 n0 z% s5 s- r
Consistent estimate, 相合估计) R; w( s" P' Q# ]
Constrained nonlinear regression, 受约束非线性回归( T* B0 N0 z: t8 p$ E) N, [
Constraint, 约束/ u8 O" F, k/ W! ]
Contaminated distribution, 污染分布6 t# ~* l2 z$ V0 W0 ?. `. ^
Contaminated Gausssian, 污染高斯分布5 _: j! t9 z8 |' J8 {' Q; M- I1 N
Contaminated normal distribution, 污染正态分布
' l5 N+ g) w1 wContamination, 污染
5 d: I9 X" H$ N! [4 W$ V2 mContamination model, 污染模型% V5 [' n8 r- Q$ N* L6 ^: b; Q- b
Contingency table, 列联表% H% q V/ Y6 C( j6 g5 i9 @
Contour, 边界线
( b+ r1 _$ R1 W3 W2 ?3 IContribution rate, 贡献率- e& Y7 B. \" {! `
Control, 对照
7 |0 ^: G- y) [; lControlled experiments, 对照实验' P! l/ i' j& A- [5 y1 R
Conventional depth, 常规深度: t! z" u8 J! _( A
Convolution, 卷积
f$ o5 ~ N4 p; N/ h2 MCorrected factor, 校正因子7 k' Y+ x4 |+ g. s+ U
Corrected mean, 校正均值
" e! j7 o" x$ b6 Y& I* tCorrection coefficient, 校正系数6 \6 L6 h' H) Y0 L' i& t% T# M
Correctness, 正确性) K2 [2 f0 b3 d- h- l& ^
Correlation coefficient, 相关系数
6 ~1 B* _5 L, @9 g f! FCorrelation index, 相关指数! r- N9 @( d- X1 W% g
Correspondence, 对应
- o# I! c* y& U. ` }7 `# OCounting, 计数
( y4 b, S0 X+ l& T w7 [1 b _1 [Counts, 计数/频数
; B2 q W3 O7 F: E1 k4 j. TCovariance, 协方差# L! B1 D, z0 Q5 z
Covariant, 共变
2 ?! ]( f9 k3 y% I, E: X9 L1 yCox Regression, Cox回归
0 [+ o: u. r( mCriteria for fitting, 拟合准则6 y9 W: @- N" ~" W5 t: v- _
Criteria of least squares, 最小二乘准则2 A2 Z _3 K% F- F8 E( j( E# a, L
Critical ratio, 临界比
# R. F8 t: w; XCritical region, 拒绝域! {8 }7 y( u: h- ~5 i
Critical value, 临界值4 s4 S1 ]$ b' t: |- r( k
Cross-over design, 交叉设计. R5 w+ C: f8 @, ~# ~( w
Cross-section analysis, 横断面分析
& P3 {1 u- Y. T3 G- JCross-section survey, 横断面调查 `$ u, e2 ?1 b) x$ m4 Z
Crosstabs , 交叉表
6 A% f8 ~% C1 V1 p- P( l. G8 hCross-tabulation table, 复合表
3 B5 Q; G/ ^% uCube root, 立方根
# [' b9 W) F7 l7 f8 h, RCumulative distribution function, 分布函数
3 ^5 ^' |8 R0 }& a% CCumulative probability, 累计概率
, s+ e/ D; Y7 Y7 S7 a7 E* ^+ L5 TCurvature, 曲率/弯曲
4 U' `2 q l1 G9 ?% hCurvature, 曲率% W7 t% Q0 E7 |4 N. {
Curve fit , 曲线拟和
/ B( J1 z. N7 @$ ~' lCurve fitting, 曲线拟合' x9 O! B' O' Q1 S
Curvilinear regression, 曲线回归3 ^* Z: o- B* }* f. s, m
Curvilinear relation, 曲线关系
c x2 n' r5 P" q, Z& q2 c, }Cut-and-try method, 尝试法
$ ^. g2 B3 W9 q# c/ H: jCycle, 周期
4 @' X1 U" [ uCyclist, 周期性5 l( P5 i1 a" \/ |7 a# [! W
D test, D检验
+ i: k% v. N# T9 i% IData acquisition, 资料收集! }% V9 y2 K& j; c5 ^0 X
Data bank, 数据库
/ @: G) ~. i3 G- a+ t7 MData capacity, 数据容量
, L% p: D9 r4 U( FData deficiencies, 数据缺乏
W/ I- [3 f- K' g8 MData handling, 数据处理" C; K( M; j, D5 ]
Data manipulation, 数据处理) z# l+ Q: x: n+ A' i
Data processing, 数据处理: b7 B3 d* m. D; G
Data reduction, 数据缩减
) |; [2 T" }7 G! n2 xData set, 数据集: a3 ?/ m. }3 L) k* [
Data sources, 数据来源
& y, N) h9 y9 k% M0 I- {Data transformation, 数据变换
9 G8 ]% n; Y; E# F. PData validity, 数据有效性$ A0 R: K9 `6 R2 e% o- ?
Data-in, 数据输入
3 t8 ]; D6 [' n4 ZData-out, 数据输出8 L# ^! M' n# ` H
Dead time, 停滞期# F' ~- e+ @9 h) _1 G+ k, V% a
Degree of freedom, 自由度' v1 z5 F9 k& y, C/ t, l
Degree of precision, 精密度
" D0 H* ]+ q s4 q* I7 F( JDegree of reliability, 可靠性程度& T7 }* p$ L1 T2 c8 u- g
Degression, 递减
* X: X6 ~+ G6 l) ?6 CDensity function, 密度函数
. K1 L( c! V5 O# F& z( lDensity of data points, 数据点的密度3 }0 P* w Q- S( \+ J1 ~) l! i
Dependent variable, 应变量/依变量/因变量& a a) l+ e; x) w0 C5 @
Dependent variable, 因变量
! f. u: L/ g9 S/ D# e5 w R" O9 PDepth, 深度
! `# T# o* Y# B0 sDerivative matrix, 导数矩阵& M# J/ i/ J6 B8 u
Derivative-free methods, 无导数方法
/ l9 B$ p j" o3 ~0 eDesign, 设计% B! ~+ x# o& r# q5 j$ D
Determinacy, 确定性8 T; Q* T7 _# |3 n+ C* N* w" y& L$ M
Determinant, 行列式
' e8 R1 W4 U: R# c" nDeterminant, 决定因素! l, D1 ]/ J* P+ C/ P0 S
Deviation, 离差. M' t7 j1 u* L" u
Deviation from average, 离均差, y9 i5 U2 r8 h X$ T: T8 q
Diagnostic plot, 诊断图& a; L+ S' U8 M t- g4 K
Dichotomous variable, 二分变量
- h1 I8 r' y( Y7 {1 EDifferential equation, 微分方程3 Y7 x, ` `1 G& _6 ^8 V0 v% K
Direct standardization, 直接标准化法
$ S2 z F& P' R0 T$ B. NDiscrete variable, 离散型变量
9 ^4 h- @: V0 H* o4 L0 s1 HDISCRIMINANT, 判断
& y+ S2 y! @" ADiscriminant analysis, 判别分析
6 @% s6 I2 O7 {Discriminant coefficient, 判别系数# r! P, }0 q7 M9 l7 o
Discriminant function, 判别值4 \# U3 k) O5 }- z; T+ M& G, g3 w
Dispersion, 散布/分散度9 n8 F0 @* Y+ i$ A! T" l6 ?9 e2 R
Disproportional, 不成比例的4 ?; ^: Q2 Y% ]) a+ {
Disproportionate sub-class numbers, 不成比例次级组含量- K9 l, w/ `; p4 @2 `
Distribution free, 分布无关性/免分布+ J5 p1 E0 r4 x/ J
Distribution shape, 分布形状0 T3 ?$ B4 N8 P2 V* S% U
Distribution-free method, 任意分布法
$ L! }5 x9 _" b; q( g* y4 CDistributive laws, 分配律7 b' S/ g3 Z& K- v
Disturbance, 随机扰动项% J3 s3 P+ v) m/ o" g; U8 x
Dose response curve, 剂量反应曲线1 q( A* H a3 ~. ^
Double blind method, 双盲法
' W, H& w- P1 P3 _7 N0 _. j7 x5 fDouble blind trial, 双盲试验
" l, b6 v0 i+ Y! J& [4 a' R) hDouble exponential distribution, 双指数分布6 V) P9 }5 s. V7 |0 B
Double logarithmic, 双对数2 m* v3 _4 l, S t; }, }
Downward rank, 降秩2 S" }8 C$ D( c" Q; a7 y$ p( Q
Dual-space plot, 对偶空间图, |1 E X0 A8 C! @
DUD, 无导数方法
& }- v- ?) c# H C, B" ADuncan's new multiple range method, 新复极差法/Duncan新法
0 v; `, v3 `- q8 y) LEffect, 实验效应
5 E2 ?2 \$ u Z9 K w: ~0 z/ qEigenvalue, 特征值
" u7 j1 C0 L; s* H! _4 V8 rEigenvector, 特征向量
: A1 o {" V2 `7 e$ q/ E$ tEllipse, 椭圆 } }" B. W, I) E9 f' _5 B
Empirical distribution, 经验分布7 ^1 m( ]7 D8 d9 i( I
Empirical probability, 经验概率单位7 a4 [% z: U( H$ u& u8 z
Enumeration data, 计数资料/ R, t! \2 p. {4 Q6 |* p& y% U* Z% v' C; D
Equal sun-class number, 相等次级组含量0 @& T9 g9 P0 H9 a$ g& O
Equally likely, 等可能- o& z. V$ K- q% [
Equivariance, 同变性) x/ z* f f6 q3 q0 b
Error, 误差/错误; h Z2 |. p$ h2 V F9 P7 |
Error of estimate, 估计误差
7 c H: E1 { B/ C% ~( H, f) s: Y* EError type I, 第一类错误
% _& p: [, h+ H$ U) m* I* zError type II, 第二类错误3 {0 j3 a- l* u) R4 `
Estimand, 被估量1 z& K9 p( l; f7 {
Estimated error mean squares, 估计误差均方
1 ]' q2 P5 Y3 H2 I7 _Estimated error sum of squares, 估计误差平方和
H& n3 c: I1 {% ?; hEuclidean distance, 欧式距离& L* x: i% ^, d+ N$ C
Event, 事件/ k, ~! p5 J4 h3 J3 [( X% }
Event, 事件
+ k/ T6 H) r+ w* @7 _7 j' aExceptional data point, 异常数据点7 Q0 u# C- }% Q1 `3 {; i. o9 u
Expectation plane, 期望平面6 q9 K& S+ W% q, A
Expectation surface, 期望曲面& E+ v8 P0 G2 |
Expected values, 期望值: i" _3 E! I Q! }
Experiment, 实验, y# E+ V" U/ {- F( ]3 \
Experimental sampling, 试验抽样; R5 e G, \, c- s, m7 t
Experimental unit, 试验单位- O$ q6 O+ P0 p" v0 e1 F- l4 p9 E
Explanatory variable, 说明变量
( o1 C4 ^7 I6 p$ A n0 wExploratory data analysis, 探索性数据分析
8 p, o+ T1 B2 M) Y, PExplore Summarize, 探索-摘要
- o) q, [9 e, ^" s- `. j6 VExponential curve, 指数曲线
8 U. Q# |+ `" ^Exponential growth, 指数式增长1 C6 ?* N/ i; t* D
EXSMOOTH, 指数平滑方法 ( d1 O' C/ e! x3 o
Extended fit, 扩充拟合
5 c7 {6 b* ^ u m- WExtra parameter, 附加参数
* g; U+ v D" t# v, oExtrapolation, 外推法
" q7 G$ v9 h" b1 Q% j. uExtreme observation, 末端观测值* W8 i2 C/ ^$ a6 n' [, ^* @2 n' }/ l
Extremes, 极端值/极值# [3 V) `# _- J* e
F distribution, F分布5 G: F1 l8 Y; f8 O; M7 f2 m. X- c7 D
F test, F检验+ E# a# k1 T) X- z+ f* f% L
Factor, 因素/因子
6 s3 n- f7 d! F$ [) MFactor analysis, 因子分析% X# S4 e% N8 {! D! |7 s. l- _2 K
Factor Analysis, 因子分析
8 [. l& d3 ]5 B6 sFactor score, 因子得分 3 W& ^# \" `7 B5 E- h. A" _
Factorial, 阶乘
7 ~" x: y8 g7 U6 P+ yFactorial design, 析因试验设计1 L- i1 h1 J6 P- W& H7 @1 @" ^
False negative, 假阴性, {8 s3 u7 i0 x6 w H! g
False negative error, 假阴性错误) K* X9 ?2 `6 M- L. o L
Family of distributions, 分布族
|& o3 H& d9 i' ZFamily of estimators, 估计量族
! A2 T3 F7 S4 vFanning, 扇面
: D0 s5 b' d' ]" [9 ~+ s% q" J9 }& rFatality rate, 病死率
! I6 r' B# C$ o, k) SField investigation, 现场调查
; l; u8 ? @# D3 X/ O& q; ?Field survey, 现场调查
0 ]1 Z6 n2 \9 c+ EFinite population, 有限总体
q9 }6 p/ c' [* OFinite-sample, 有限样本
+ i1 v- F% @8 N1 I# b% JFirst derivative, 一阶导数
) @( K! {( a/ U; P0 o- V, ?* d8 SFirst principal component, 第一主成分
+ G$ t: c: T; R ^First quartile, 第一四分位数
3 m4 S k( f2 [- @0 FFisher information, 费雪信息量6 m' Y- V1 e) b* g, ] c$ O
Fitted value, 拟合值
. M1 q) T+ O) n! m9 E7 GFitting a curve, 曲线拟合# a& _9 O9 P" h. @! w( s
Fixed base, 定基! U7 U ?) i. J9 G
Fluctuation, 随机起伏
3 a- S; q) o9 B* i# hForecast, 预测( s$ b$ X: O. U4 r$ [
Four fold table, 四格表% ^8 O: J4 E/ j" k+ G
Fourth, 四分点; Y3 @# T3 o5 t" ?6 C# f4 H+ z
Fraction blow, 左侧比率+ J5 Q5 g: ]6 c* f& c3 _+ }
Fractional error, 相对误差
+ `9 j4 f/ D& ?% P: H* hFrequency, 频率, R9 T* M' E- \
Frequency polygon, 频数多边图& C2 i2 s7 P* {( R9 g- `
Frontier point, 界限点
! u$ d6 N% w# d+ s+ DFunction relationship, 泛函关系
1 ~9 x: i# F" o9 D+ n JGamma distribution, 伽玛分布
, }+ x B S$ H1 _: tGauss increment, 高斯增量
# w" k# T4 J! RGaussian distribution, 高斯分布/正态分布
4 q# _) b9 m3 o+ l8 y1 VGauss-Newton increment, 高斯-牛顿增量# x0 ]2 U+ W, |( e+ Q- E: u: x
General census, 全面普查( S% q+ f. K& A& O* c3 O
GENLOG (Generalized liner models), 广义线性模型
4 q/ Z5 J& Q0 q" F5 o# bGeometric mean, 几何平均数
3 p/ A/ ?* {8 sGini's mean difference, 基尼均差
( _5 T* B/ m, x! c% W* AGLM (General liner models), 一般线性模型 , n8 W1 z+ \: e1 [ h6 @* f
Goodness of fit, 拟和优度/配合度
2 D2 x' [, [- x3 D8 gGradient of determinant, 行列式的梯度
% f: W3 E& P& n4 V% HGraeco-Latin square, 希腊拉丁方
1 E; F, A. S$ j3 z7 ]6 J: {Grand mean, 总均值
( T! _$ j+ o9 t% N: K# g+ T( SGross errors, 重大错误
: Z4 a2 y2 I* w# X! `. BGross-error sensitivity, 大错敏感度0 O: l* u; K: r& h
Group averages, 分组平均2 ?, X. L# s+ N. P/ @$ D
Grouped data, 分组资料
0 ^/ e) x+ I1 O& F7 j; uGuessed mean, 假定平均数( {+ W) @4 B6 f7 I( f
Half-life, 半衰期
) g) U6 m0 Z D+ @- ?8 ^- aHampel M-estimators, 汉佩尔M估计量 |' o6 ^( c5 v, e' u G/ O5 V/ H
Happenstance, 偶然事件
) f" k/ B1 I6 D' m% {* y+ d8 D' nHarmonic mean, 调和均数) z* `! G! e3 r( ~
Hazard function, 风险均数. |: w1 W- [- J4 `4 _# L
Hazard rate, 风险率3 @4 {: r7 V) |$ R0 \" M" a' H k
Heading, 标目 ' d; F5 l2 c+ {0 M1 |- p
Heavy-tailed distribution, 重尾分布
3 e- z$ z- t( _4 ^' RHessian array, 海森立体阵/ x( g. m; I$ _. z, T. X# }
Heterogeneity, 不同质/ V+ O, Z; J0 v3 H0 r. i( ], H
Heterogeneity of variance, 方差不齐
, i. C, m( ] Y' s. Q; hHierarchical classification, 组内分组
1 Y8 f% I/ s/ c& T; ~" d' [Hierarchical clustering method, 系统聚类法
i z/ q4 P3 N2 U9 R2 c4 @/ iHigh-leverage point, 高杠杆率点
+ R$ I1 \4 u6 f+ @HILOGLINEAR, 多维列联表的层次对数线性模型% p/ v% U6 i+ V& @. m: s
Hinge, 折叶点
$ G X) t F% d/ ?, r: H! b' h& HHistogram, 直方图
2 t1 F L$ z0 F" W. J, I+ oHistorical cohort study, 历史性队列研究 & D% M1 B3 l2 N$ w, ?$ n
Holes, 空洞
k4 f7 q: j0 XHOMALS, 多重响应分析
& _3 R& k. e: r! f0 bHomogeneity of variance, 方差齐性5 d/ E" d" A* P* A
Homogeneity test, 齐性检验1 I z$ C) Z* X! {/ U
Huber M-estimators, 休伯M估计量6 E! ]/ }1 M Z
Hyperbola, 双曲线
! k/ K* ~6 Q+ w( {Hypothesis testing, 假设检验9 S; K! k: T5 a1 C0 V
Hypothetical universe, 假设总体
/ _( j* |7 q) C( j8 @" KImpossible event, 不可能事件( d! n6 Q" |7 X
Independence, 独立性
2 D5 B9 c' x1 N. DIndependent variable, 自变量4 V% @$ m8 S! N% ^+ G( G
Index, 指标/指数
3 K. p9 v9 e% BIndirect standardization, 间接标准化法5 Z# N3 t( {+ q7 z. o$ _
Individual, 个体; M0 B' j+ B4 P1 y! t( E
Inference band, 推断带
4 T2 A% T- [ PInfinite population, 无限总体. `3 d( Q' K1 o3 W. f
Infinitely great, 无穷大
* B* {; E& c& e4 }Infinitely small, 无穷小 d$ i- y! i6 J
Influence curve, 影响曲线
' f) Y+ p' n1 L% GInformation capacity, 信息容量
! d$ e( X3 d3 KInitial condition, 初始条件$ Z0 x. Y. L% R. s6 g
Initial estimate, 初始估计值( P$ }/ n* w& Q7 q6 J
Initial level, 最初水平2 Z5 @0 n* @9 N" x7 r
Interaction, 交互作用, d- F: {- `, m9 g+ R: j( e& U
Interaction terms, 交互作用项) G" y: c5 ?& [: x1 X- m! Y
Intercept, 截距
0 V2 `# a4 }! k2 O8 n! C/ XInterpolation, 内插法
' W0 P( v+ f, @! K5 V U3 fInterquartile range, 四分位距9 L4 j7 m3 J& A. N
Interval estimation, 区间估计2 r, T# l2 ]5 D# O
Intervals of equal probability, 等概率区间
* Y4 B! n1 w; X6 g; B! B1 GIntrinsic curvature, 固有曲率8 q, q3 b- ]2 U- h4 C
Invariance, 不变性* Y" [9 P, B; e s' r, B: Z
Inverse matrix, 逆矩阵: X3 I5 J; b6 @& w! `
Inverse probability, 逆概率
: ?# Y) C# M( |# |Inverse sine transformation, 反正弦变换
. i* R" r* f8 ~' s- B2 a8 UIteration, 迭代
7 G# Y" l1 C- HJacobian determinant, 雅可比行列式$ r5 m1 h: }$ Y' F
Joint distribution function, 分布函数. I: u, j, H1 f
Joint probability, 联合概率8 F. M Z/ t" D! X x* [2 Q& i1 X) Z
Joint probability distribution, 联合概率分布
$ h: t, Q# b. B7 VK means method, 逐步聚类法
0 q3 }* g5 M) zKaplan-Meier, 评估事件的时间长度
% U+ R" v, `: O# |Kaplan-Merier chart, Kaplan-Merier图) R0 f6 K* R/ f6 a' ~: K H
Kendall's rank correlation, Kendall等级相关& w- X f5 X7 T1 ?
Kinetic, 动力学6 C9 W) u6 |5 h) i5 p4 x
Kolmogorov-Smirnove test, 柯尔莫哥洛夫-斯米尔诺夫检验
/ Y0 F4 \2 D( G' e7 {9 kKruskal and Wallis test, Kruskal及Wallis检验/多样本的秩和检验/H检验% h' s& U- \2 }% w' p. _4 I
Kurtosis, 峰度
9 E3 p. b1 f8 c0 Q& S. u) CLack of fit, 失拟* l# D; q7 L [' b2 o7 @
Ladder of powers, 幂阶梯# g; ~# p, M2 L' s( d; w
Lag, 滞后
/ f+ n5 c1 A7 e2 CLarge sample, 大样本1 l$ l: } ~6 B3 _0 H: h
Large sample test, 大样本检验1 }# @1 M4 H X/ p* `' S
Latin square, 拉丁方
$ `( m4 ^8 y! dLatin square design, 拉丁方设计, N" e: H! C1 y+ _& ~# p
Leakage, 泄漏
4 u. Y6 U' H0 c' [& D" ?Least favorable configuration, 最不利构形, e, t4 m e+ b( j' I
Least favorable distribution, 最不利分布
" O7 {/ a0 `0 \6 z' GLeast significant difference, 最小显著差法9 S# v& U. ^8 L1 @, B
Least square method, 最小二乘法
+ x- _- X, [" U" X6 QLeast-absolute-residuals estimates, 最小绝对残差估计 R/ i# J! E% W! n
Least-absolute-residuals fit, 最小绝对残差拟合
6 E( r# M! Z' v" J- O( m8 fLeast-absolute-residuals line, 最小绝对残差线
% j8 ^5 J7 O9 ~* _4 x8 X% y8 bLegend, 图例
6 }; V) ^+ W7 g x, } ~5 r# CL-estimator, L估计量7 a# O' R/ }) {
L-estimator of location, 位置L估计量
A$ D' }( D# K2 LL-estimator of scale, 尺度L估计量$ M; T9 l# i, l* n ^
Level, 水平
* {5 b6 |' b0 s0 W; L4 A5 }Life expectance, 预期期望寿命
. }4 J. k) M4 @0 HLife table, 寿命表
0 q. L% f# {& {& i9 _" b! hLife table method, 生命表法
( |9 i, Q) G; D2 G' |Light-tailed distribution, 轻尾分布( d4 f( j4 z, i
Likelihood function, 似然函数$ I _% J0 G3 f) Y4 ]0 l
Likelihood ratio, 似然比+ }& F; y" c7 t7 \2 A* Z
line graph, 线图
; Z7 R7 Y- j; J& y8 m R5 ]2 KLinear correlation, 直线相关: _2 X/ V2 i" }
Linear equation, 线性方程, z0 C0 x+ F- c; Q
Linear programming, 线性规划
; m0 n) D, j6 B( N! {% M6 vLinear regression, 直线回归
! g9 b, \+ M' O0 @Linear Regression, 线性回归
W" Y5 h# L t* n* XLinear trend, 线性趋势
2 i# t% j( I; x" H* dLoading, 载荷
& E: O/ R/ ~; pLocation and scale equivariance, 位置尺度同变性' Q4 f8 o6 J+ |3 y7 J" r+ T8 o- T
Location equivariance, 位置同变性
; X& w+ |+ p6 A t3 I* WLocation invariance, 位置不变性# _5 @/ S7 }6 J8 n) Q6 m, g
Location scale family, 位置尺度族
- L2 Q9 ?5 s" o$ s" _( vLog rank test, 时序检验 + L9 |0 c, J! ~( ^( \, K8 j6 k
Logarithmic curve, 对数曲线
! n% K# k; @& A/ t4 a9 e4 LLogarithmic normal distribution, 对数正态分布; _+ o l; C+ a3 \/ v6 V5 s+ |8 t/ _
Logarithmic scale, 对数尺度9 }# O9 V' w9 J" s% b0 q0 i6 i: n
Logarithmic transformation, 对数变换
# h, l' w" }5 \+ D% VLogic check, 逻辑检查 l g- G& O2 {' Q6 s
Logistic distribution, 逻辑斯特分布
; O! U5 s+ w( d# M& \+ CLogit transformation, Logit转换
4 a( W) Y( w$ p" J( U) p, s7 E, Q {LOGLINEAR, 多维列联表通用模型
5 G {- M+ D# l$ K, T: zLognormal distribution, 对数正态分布/ O2 Z. h' s2 z0 Q$ y8 k* b6 G
Lost function, 损失函数2 e7 ^* R7 \. a' ~# z7 T7 M3 ?* v; \
Low correlation, 低度相关
7 x8 F3 y0 _, Y( k: DLower limit, 下限7 @7 Q- f* ?9 G5 p/ m+ a" Y7 g7 @
Lowest-attained variance, 最小可达方差( L9 c; ~; z$ f
LSD, 最小显著差法的简称4 H; g1 c: i+ l
Lurking variable, 潜在变量
$ y" w7 g- d o8 [Main effect, 主效应% J* L. n$ j7 U* w) `
Major heading, 主辞标目
4 o* K' S7 p9 \, k8 e. [9 sMarginal density function, 边缘密度函数2 f. O$ }) x5 a8 c
Marginal probability, 边缘概率. Z" m9 `4 f- M% o1 v; z
Marginal probability distribution, 边缘概率分布
S5 @1 R% L. g8 q( w% iMatched data, 配对资料5 B' W8 ?0 O/ `- }' ~4 c3 `
Matched distribution, 匹配过分布
" v+ L5 W- b+ v. b1 l- _7 NMatching of distribution, 分布的匹配
: f c" E& p/ q) j! sMatching of transformation, 变换的匹配
9 O! p4 G5 a' Y8 d% H/ K9 c& mMathematical expectation, 数学期望' h' A2 I3 x/ L7 P H- x3 t
Mathematical model, 数学模型
! I/ M# H7 ^9 M4 ?Maximum L-estimator, 极大极小L 估计量/ K3 q2 i1 M1 }& I+ P# {/ l
Maximum likelihood method, 最大似然法0 {% [. j) s7 I3 a- z, |$ g0 g
Mean, 均数
4 G& X# |$ F) jMean squares between groups, 组间均方
% R" t8 j; o; _; ]% sMean squares within group, 组内均方
. Z# X- E, p6 n1 PMeans (Compare means), 均值-均值比较9 W G1 [$ H3 o( x6 M
Median, 中位数
" c) |4 ~! `! Q& E' NMedian effective dose, 半数效量
" Y# N& Y% _" y+ wMedian lethal dose, 半数致死量
6 N$ L; s& c+ k+ Q+ s# h, ZMedian polish, 中位数平滑& Y, B% @" U! X; @8 r; Q, _7 G, R
Median test, 中位数检验: q0 h8 K1 |- p g! ?' G/ a
Minimal sufficient statistic, 最小充分统计量
# C0 A0 u1 a' n6 g1 IMinimum distance estimation, 最小距离估计( @$ q( r J( C) B6 e0 Y6 k
Minimum effective dose, 最小有效量* @7 ]$ H H4 b. m9 A7 g; X
Minimum lethal dose, 最小致死量 X3 S' Q2 t7 }) F3 s
Minimum variance estimator, 最小方差估计量
+ p3 M% ^# B, L- k. oMINITAB, 统计软件包
! j) o' D9 S, C1 S7 QMinor heading, 宾词标目
7 z1 g% R; A; x- iMissing data, 缺失值
' ~. G$ n2 a3 [Model specification, 模型的确定
8 i; w5 J H7 V% {& i l3 gModeling Statistics , 模型统计
+ T1 S4 T- U# t6 rModels for outliers, 离群值模型
! X* o1 {# O3 _, s& T1 M4 ~Modifying the model, 模型的修正% d% D, c! G4 q
Modulus of continuity, 连续性模
. R1 P5 [" H+ y0 S3 r5 y7 eMorbidity, 发病率
6 }. a+ p9 g- i' tMost favorable configuration, 最有利构形, N5 b% ~) o) V$ v. W" L7 j% w
Multidimensional Scaling (ASCAL), 多维尺度/多维标度
) D p9 q) f2 M3 zMultinomial Logistic Regression , 多项逻辑斯蒂回归
# G2 i& }2 x$ m& k% FMultiple comparison, 多重比较' X( d) [5 |( w8 L. W% d9 e* c
Multiple correlation , 复相关
1 W* n8 a. a$ y# Z L1 Y& BMultiple covariance, 多元协方差2 k8 ]3 ~$ `+ ]; ?7 a2 d3 K* T
Multiple linear regression, 多元线性回归
- V/ ], T' \$ j5 p! _Multiple response , 多重选项1 v2 O( z4 w& k: E$ X. y* Y3 q
Multiple solutions, 多解! }! Q* c( w. z9 O" z
Multiplication theorem, 乘法定理
. [( \8 A8 K" q, ^1 e% U( \7 m& PMultiresponse, 多元响应+ g) u5 e+ g1 k. X$ r1 @
Multi-stage sampling, 多阶段抽样3 [0 f0 p% v& [
Multivariate T distribution, 多元T分布) B5 x7 c% Z2 ~8 \
Mutual exclusive, 互不相容+ L$ n& R3 V% q8 I6 A( a% Q+ {
Mutual independence, 互相独立* B3 T& P- M; T8 w& f% m
Natural boundary, 自然边界
) m8 y" O7 A, T: P( y4 @- w4 O( f: GNatural dead, 自然死亡
1 k5 r! ]$ B4 K3 p5 RNatural zero, 自然零5 z& Z; G1 o0 g2 p6 Y3 E
Negative correlation, 负相关! @8 S/ A J0 i2 T* [0 x
Negative linear correlation, 负线性相关
8 J( ?8 [: l4 g7 L- z0 r9 {Negatively skewed, 负偏
: p3 h( I% j. g# ~4 ~6 f% wNewman-Keuls method, q检验" u- V$ o* ~( ]; u7 }
NK method, q检验# |* ?% R- A' y3 w! j7 Q
No statistical significance, 无统计意义
! |* a" r- ?2 n8 p; lNominal variable, 名义变量
" |. w; A) H1 U* H4 u' ENonconstancy of variability, 变异的非定常性
/ f0 x+ F$ p- |* B' g2 RNonlinear regression, 非线性相关
) M# m8 M7 E; [$ XNonparametric statistics, 非参数统计
% A6 ^2 K, k2 D5 mNonparametric test, 非参数检验
6 P* J$ `; `% B- h6 D/ K zNonparametric tests, 非参数检验
, J$ s1 ?2 Z1 y- y- x4 u. j% FNormal deviate, 正态离差
_4 r J3 f9 l! f, DNormal distribution, 正态分布
4 S& z# y8 A- V; T' S* ^, H5 NNormal equation, 正规方程组
( Y. F' U* V8 O: c8 J4 cNormal ranges, 正常范围
$ F s% C! M0 wNormal value, 正常值2 k9 p: C9 S, ~- ^
Nuisance parameter, 多余参数/讨厌参数' _; j" J! m- H8 T2 O' E( C* S
Null hypothesis, 无效假设
4 c$ s- Q0 ^; b1 R6 cNumerical variable, 数值变量' B: z( E4 i: F& i; U
Objective function, 目标函数
; Z! \# Y) s' dObservation unit, 观察单位
, z; Z- q: G2 F+ FObserved value, 观察值
# S _$ S& m: z" HOne sided test, 单侧检验
7 d7 B z) e. u4 S0 ]" o, ]6 SOne-way analysis of variance, 单因素方差分析
3 \7 _2 v! b6 U9 Q' G; [1 ]% k: JOneway ANOVA , 单因素方差分析
2 U8 S {' n6 g" ?7 v: VOpen sequential trial, 开放型序贯设计
, y, m; ?/ r) v( a- E$ ]) c. lOptrim, 优切尾; z4 f+ n( \- U1 `# f! j; ~
Optrim efficiency, 优切尾效率
2 u& d5 R) W# A" w) | @1 d, d+ aOrder statistics, 顺序统计量9 }7 V# n) @7 p- u) C
Ordered categories, 有序分类
/ s4 s( x/ B/ L$ M' OOrdinal logistic regression , 序数逻辑斯蒂回归 E7 i8 q) |9 q; g, b9 P
Ordinal variable, 有序变量4 A0 ?- @ |2 o: l n
Orthogonal basis, 正交基& D, D1 _$ \4 y& d, g
Orthogonal design, 正交试验设计
6 h* e, a8 ^. {Orthogonality conditions, 正交条件8 R" K% {3 n8 L$ X4 V. y* q, g; F" ?4 y
ORTHOPLAN, 正交设计
' W) ^3 n" ?) [# a! u6 ^$ DOutlier cutoffs, 离群值截断点; ]4 Q+ t5 f- _' G
Outliers, 极端值/ M, a+ N0 a# g$ X) e
OVERALS , 多组变量的非线性正规相关
0 K9 E0 T0 W5 o5 A6 t3 O3 [Overshoot, 迭代过度
( ?6 h; T. I" p% b# [. fPaired design, 配对设计* o: A1 O' `# T2 W! T+ }; e
Paired sample, 配对样本
8 _0 z' E% g ?( B: I( Q/ QPairwise slopes, 成对斜率
2 {. v) D8 r2 E. Y( p+ M8 d/ hParabola, 抛物线5 [ |+ S8 { v0 ]+ d7 t! n7 W7 l
Parallel tests, 平行试验
w0 G: {* d# ?* S6 z3 x$ e7 R% BParameter, 参数% C' a% }$ u- [- b
Parametric statistics, 参数统计
0 U1 v. W% i+ W! G" t" X! l; _/ u* [Parametric test, 参数检验
5 Y, s. E0 D) e2 lPartial correlation, 偏相关
+ K* O6 b6 k6 P; R# Y) K. \Partial regression, 偏回归
: m8 {5 r f: o: K$ MPartial sorting, 偏排序: ^/ @! C6 s/ |& M/ i
Partials residuals, 偏残差
) Q# Q- h- Z; {& j% t0 }; i( cPattern, 模式
3 ]. G9 m6 m8 p7 q( w3 ?Pearson curves, 皮尔逊曲线 J8 K+ i" i% i3 e) N8 ]2 u
Peeling, 退层
' e3 X/ A) M$ ~7 W6 XPercent bar graph, 百分条形图
; r; D2 Z1 N R7 E$ w- k& |& jPercentage, 百分比
6 i, J/ e; ^, t1 M" vPercentile, 百分位数9 l4 [6 O1 m7 j2 g& V; D$ e1 I
Percentile curves, 百分位曲线
6 q9 B9 W' Q* B# YPeriodicity, 周期性! q2 u, Q) L% _
Permutation, 排列! P8 s% n! H9 c6 z! ^" p
P-estimator, P估计量
5 I& Q8 H. p) U# h2 J0 MPie graph, 饼图6 s5 y+ [: i, h: d4 R9 [$ A$ |
Pitman estimator, 皮特曼估计量6 v' B' {+ u" W8 V
Pivot, 枢轴量
# E" _4 h2 o+ j3 ?. g; ~7 D* uPlanar, 平坦! l( M. ~: r4 H- k; c3 }- ^9 \
Planar assumption, 平面的假设
6 N8 W1 P( ^6 K4 P! b: oPLANCARDS, 生成试验的计划卡
& f! \8 ?6 Q' M/ Q1 f. PPoint estimation, 点估计, y- I X& o4 T# _. c9 C0 R* I
Poisson distribution, 泊松分布
7 g, {9 Q7 d! g4 _; bPolishing, 平滑% m" N0 c6 w# R. E% X
Polled standard deviation, 合并标准差' B2 T. g5 {* \/ b u/ W, Q
Polled variance, 合并方差+ H! q; j6 B- x" @
Polygon, 多边图 j5 \. [7 c6 U6 z) e `% W( J
Polynomial, 多项式
# E1 b' w0 q; x# s" T& vPolynomial curve, 多项式曲线/ H+ h% x) b" |4 \# M
Population, 总体
4 l5 D" y, b5 \6 yPopulation attributable risk, 人群归因危险度( @" b) f+ p/ ]& j, l/ \
Positive correlation, 正相关6 | x& b$ P8 { x3 Q! ^
Positively skewed, 正偏
8 ]) w% y6 a7 A) {Posterior distribution, 后验分布3 e# D1 _+ y; a6 d2 b' C
Power of a test, 检验效能
$ m* ?$ t+ H! o) Q" T( e: U0 WPrecision, 精密度* d! S- O( m7 \6 K- ~" @( l
Predicted value, 预测值) a+ M9 }- G8 {/ k9 C
Preliminary analysis, 预备性分析
! V6 w) Z9 z- b9 F" O x, ], PPrincipal component analysis, 主成分分析
5 a6 |3 c- D TPrior distribution, 先验分布* L2 w/ u1 j, o; N/ J
Prior probability, 先验概率7 _9 D/ D' ^' h# A+ P" O2 E
Probabilistic model, 概率模型
8 h3 U0 M6 H5 B1 D, [probability, 概率
, n" |, j# `$ _. o zProbability density, 概率密度
+ Z+ a9 w0 L( sProduct moment, 乘积矩/协方差6 s$ H! [7 h( ^9 G( A# f
Profile trace, 截面迹图
( [: H. n( d6 ]8 o/ _Proportion, 比/构成比
$ r3 W7 x) _% ` }8 E: C: f# r# LProportion allocation in stratified random sampling, 按比例分层随机抽样
1 j6 p; X0 }5 P% D8 g( L3 e0 mProportionate, 成比例
* P% F7 q U: j" Y8 A V: Y0 cProportionate sub-class numbers, 成比例次级组含量6 _4 I+ f6 m/ @" E' n/ k
Prospective study, 前瞻性调查
) u, K: Z% Q* C* a% O) n4 F5 hProximities, 亲近性 , h( B2 {: T- U5 p
Pseudo F test, 近似F检验5 p$ r, i* Z6 K1 U" H1 t% D' D. D3 K
Pseudo model, 近似模型
% W6 E" P1 b4 O5 L6 oPseudosigma, 伪标准差* ?8 y4 E5 O. @, h7 V3 ~
Purposive sampling, 有目的抽样1 Y, m' K4 O" g; `
QR decomposition, QR分解
. Z3 ~: i0 d$ ?Quadratic approximation, 二次近似
& m7 v! ~" ]9 {# U( eQualitative classification, 属性分类* }8 G; e" V' b9 M* s. d: T
Qualitative method, 定性方法
) W8 N- Y1 {/ r7 W( e, `5 n7 KQuantile-quantile plot, 分位数-分位数图/Q-Q图3 W% X9 Q+ E3 S' Z0 X: y
Quantitative analysis, 定量分析
& X% G' f4 F' m" y0 v+ QQuartile, 四分位数/ S; v6 v5 L! A% I& d6 f" ^- F
Quick Cluster, 快速聚类
8 C; |) D# @% d6 MRadix sort, 基数排序& |2 P2 D$ x+ D& }$ f7 Z/ O+ j1 b: j
Random allocation, 随机化分组9 C# ~0 [% j$ \
Random blocks design, 随机区组设计
- V0 F- z1 d0 H- E- n2 B% B5 uRandom event, 随机事件5 j( P! J+ [: ]- V, e* p" `
Randomization, 随机化6 x7 t2 ~/ }! h% A" @! p. p- V
Range, 极差/全距0 s% C9 S# F& Z+ P' P, l0 O
Rank correlation, 等级相关
- `( d2 O0 g# gRank sum test, 秩和检验) v0 a- h" O4 F
Rank test, 秩检验: V9 o# j9 ]. O1 b% S/ ?
Ranked data, 等级资料
" b4 f$ D3 U1 {- b3 ARate, 比率9 m& L& r# T4 w3 E6 P2 J
Ratio, 比例! T$ Q' \7 V3 N! \9 ~+ t) u
Raw data, 原始资料0 i4 ^, }6 V e7 P# x9 p
Raw residual, 原始残差
" m# N- R* O$ S: ]Rayleigh's test, 雷氏检验
5 _/ c/ f6 S `( s# k7 u/ WRayleigh's Z, 雷氏Z值 ; D/ P, ?+ ]; @' r% K
Reciprocal, 倒数
1 {$ R, D9 E+ @: _! qReciprocal transformation, 倒数变换+ h/ f3 M- h+ U0 h, m
Recording, 记录8 x9 } ~+ `: e; b. G
Redescending estimators, 回降估计量
4 j( u& i( {2 u6 A* s/ yReducing dimensions, 降维
p) o& i7 s. @ V% _6 H `7 vRe-expression, 重新表达
* {) [ V- j# U4 a' tReference set, 标准组: G& N+ P5 l0 `# B8 ]( k. a& w4 Y- p
Region of acceptance, 接受域
; A' _9 h& D* d- P( P4 P3 i7 YRegression coefficient, 回归系数
8 Z( R3 a6 @4 t; l) URegression sum of square, 回归平方和6 q) X' {0 d% n5 L' O( \
Rejection point, 拒绝点# T5 s7 X+ `; x. x
Relative dispersion, 相对离散度
3 d! J# Q) h; lRelative number, 相对数% i' l$ \7 c- z- I% U
Reliability, 可靠性" k/ r5 N" Z" D8 U3 n/ L
Reparametrization, 重新设置参数
" F/ Q- |; H r: y, [Replication, 重复
" S* i" s1 M7 Y- ~1 C$ I( _/ k0 ]Report Summaries, 报告摘要
- @# u6 s: v' W1 TResidual sum of square, 剩余平方和
' o" V+ P5 q. s; \2 b3 S, L; |Resistance, 耐抗性4 a7 A5 f% N) R R0 { I
Resistant line, 耐抗线
4 n2 U7 L) j/ ZResistant technique, 耐抗技术
; h9 Q' _1 C0 m: [R-estimator of location, 位置R估计量
+ G8 {$ p, y3 z/ E* y4 u% R& Q. N b. WR-estimator of scale, 尺度R估计量. m: V( @) s& o
Retrospective study, 回顾性调查) q: {2 O. ~2 l2 d
Ridge trace, 岭迹5 s& l$ T: U' A& ^
Ridit analysis, Ridit分析8 e, M: B8 e* e3 Z
Rotation, 旋转
& M" p7 b, ]2 s" z: ?6 J8 VRounding, 舍入
* F* S9 H+ O' }8 Z, e) A' nRow, 行4 l3 {2 B+ H; |5 v7 ?0 b3 }3 y
Row effects, 行效应. \. B7 x" R, T& G+ y% @. ~& R
Row factor, 行因素+ @+ n& ?0 ~6 A! S* x
RXC table, RXC表
5 S& v8 w- V- T6 C D7 kSample, 样本( h% H8 W6 {8 C- I* B3 k: ?3 P- E
Sample regression coefficient, 样本回归系数
; U" C- X1 O% m, m" jSample size, 样本量8 B! X: ]1 Z9 Q1 o# Y
Sample standard deviation, 样本标准差3 Z! z& o, z. U
Sampling error, 抽样误差9 T( h% C$ v0 i) y2 u& g8 i
SAS(Statistical analysis system ), SAS统计软件包
1 x1 t1 e( ^8 u" X# g( lScale, 尺度/量表
! s' p/ S9 E4 ~ T w) w; b3 [9 P2 YScatter diagram, 散点图
3 I6 ~+ K; d2 y, tSchematic plot, 示意图/简图
# |) ]! R2 I9 h( |Score test, 计分检验
& D* f, t. ?" t/ Q/ K6 z# d3 y0 _Screening, 筛检
% Q) O/ D9 o8 eSEASON, 季节分析 . \( `9 s! Q" G% M
Second derivative, 二阶导数
7 n0 X" d1 D& YSecond principal component, 第二主成分
; d% D" D/ M4 [( G' uSEM (Structural equation modeling), 结构化方程模型
8 ?9 ~, l5 m& }, rSemi-logarithmic graph, 半对数图
4 r- I1 t0 s6 }" _7 DSemi-logarithmic paper, 半对数格纸
5 G/ }+ b; o2 V/ `& W# x1 K1 O9 FSensitivity curve, 敏感度曲线8 J x7 ]" j' O
Sequential analysis, 贯序分析
: y4 i8 Z5 T4 s5 O( o: V$ pSequential data set, 顺序数据集5 N1 w$ ?* A, Z1 f e
Sequential design, 贯序设计# a% i2 {6 w3 ?, l% ]9 ]5 [ g
Sequential method, 贯序法8 M8 v* z: i/ W1 o3 b- N' Z
Sequential test, 贯序检验法
/ e4 n& p5 F: a# Z; KSerial tests, 系列试验, ~1 ^! n* r6 ?# G
Short-cut method, 简捷法
' ? L- e! P0 a2 d. X. xSigmoid curve, S形曲线: C. ?1 T* M2 C7 T: G) r
Sign function, 正负号函数
& K$ w6 z, n0 rSign test, 符号检验4 T, A: C$ M: j0 @; T( \
Signed rank, 符号秩) |. p) q5 y. E1 }/ K
Significance test, 显著性检验# _! K$ d0 e5 D; A) z
Significant figure, 有效数字$ O, H# e' h9 K- u6 M* E
Simple cluster sampling, 简单整群抽样
) ^' w' R( ~ X" Q. R& YSimple correlation, 简单相关
* `! |+ i4 U+ z9 k1 XSimple random sampling, 简单随机抽样+ l# H! r$ f$ L0 R; W/ Z
Simple regression, 简单回归
# t$ E/ o- `: p+ b7 ^8 S: b, |simple table, 简单表
: a' M+ S# m& u" @8 t6 S$ HSine estimator, 正弦估计量
! `+ n8 d j4 Z* I0 eSingle-valued estimate, 单值估计
0 H2 Z' o1 M F& y4 R9 P$ mSingular matrix, 奇异矩阵
( t( |3 |1 K3 N9 ^Skewed distribution, 偏斜分布$ `5 W2 B$ o- D# J S! n9 \
Skewness, 偏度3 _2 N% U5 w4 T; ]4 ?; ^2 L/ F
Slash distribution, 斜线分布
* \- V' H, N) U+ [Slope, 斜率
" I' |) @# J2 }7 r& \Smirnov test, 斯米尔诺夫检验
, W+ m9 z2 F; j9 o5 s/ r" U7 LSource of variation, 变异来源
; N: s- L: ^2 o. Q& cSpearman rank correlation, 斯皮尔曼等级相关# I( H) _# S( E. K" Z; [1 ]
Specific factor, 特殊因子' D* V" o- a9 N7 ^8 S
Specific factor variance, 特殊因子方差# d3 J5 F$ O/ s+ }( ?+ S
Spectra , 频谱
1 f/ n4 ^! x1 |3 KSpherical distribution, 球型正态分布0 V m& L/ l; G, M
Spread, 展布 l- T9 l3 m7 G, r [! p
SPSS(Statistical package for the social science), SPSS统计软件包
/ a5 |. ^- y7 K6 o& M$ jSpurious correlation, 假性相关9 {3 p, F4 F5 C
Square root transformation, 平方根变换9 l8 C5 q5 n0 C- A% w8 r0 {1 l% z8 j
Stabilizing variance, 稳定方差! N8 C& R9 D2 r: G) P. j
Standard deviation, 标准差
- w' q8 K, t8 ]: eStandard error, 标准误4 C- Q7 s0 v2 Z% i: K0 g) o
Standard error of difference, 差别的标准误
" P, O1 q8 N- V, _4 u# `& e7 mStandard error of estimate, 标准估计误差
* l& q4 U4 i" K' i4 x4 Z# }# F0 mStandard error of rate, 率的标准误1 S8 X# z) P# z
Standard normal distribution, 标准正态分布
+ g: ]( h5 E% l$ ]: jStandardization, 标准化$ j4 q% M2 V d& F
Starting value, 起始值
& q* `- K* F- ~8 u7 j* ~. GStatistic, 统计量$ K! m( O3 p% R3 X. X
Statistical control, 统计控制: t7 D+ i8 I" N5 }7 l1 A
Statistical graph, 统计图1 w3 u- s" Q& }* J/ w$ ^
Statistical inference, 统计推断7 `# C. r2 r) f2 r$ ?. J/ Z2 ~& A0 D5 L
Statistical table, 统计表
6 ]& H. {& b0 W6 q" M; ISteepest descent, 最速下降法9 a% U; ^; F9 R6 u
Stem and leaf display, 茎叶图
# R& H! \ h9 J" ?# r/ z- S' a3 WStep factor, 步长因子2 ~' r+ H$ \* E
Stepwise regression, 逐步回归* }- q( o t }1 ]
Storage, 存
9 x3 f3 V/ \4 F% Q& mStrata, 层(复数)
: d, e# {- I* M) {0 nStratified sampling, 分层抽样
0 t2 w' v% G" Q: P. {1 x9 |Stratified sampling, 分层抽样
0 }" ~; T0 }" u5 s% q* |- d5 NStrength, 强度" f5 u2 r1 s j
Stringency, 严密性% B [. U( v+ D* H h
Structural relationship, 结构关系
8 [' ^3 U/ d- l* y. }: N5 ]Studentized residual, 学生化残差/t化残差+ d9 d0 Y( S7 Q- ?( |3 e
Sub-class numbers, 次级组含量
2 z7 b: e% p9 USubdividing, 分割0 L6 `5 S8 q1 p7 j0 ` o1 K: R& H
Sufficient statistic, 充分统计量3 P5 Y: e, C9 f3 R3 D9 a1 z, M; x' x
Sum of products, 积和- B; Y3 R, ?, ~5 z4 v' ?' I1 u
Sum of squares, 离差平方和/ w# f0 X7 M! n% S
Sum of squares about regression, 回归平方和% P( m1 J0 J. a( x2 f& u3 S' Q
Sum of squares between groups, 组间平方和
6 w0 }- _% Y, C6 i* u+ h: D4 ~. O- P3 hSum of squares of partial regression, 偏回归平方和
: r0 A. [" g3 S- m3 fSure event, 必然事件- v0 U: J% c* z7 f& X8 e( S5 l1 h
Survey, 调查
% O; i4 g" w! `/ g! o/ [9 Z+ e- vSurvival, 生存分析
" V2 g' j+ H4 I/ n. pSurvival rate, 生存率
' U8 G+ c6 a3 D3 X# ]: sSuspended root gram, 悬吊根图/ @# d/ p9 k% I- O
Symmetry, 对称' L4 U0 s5 g7 W; x' R
Systematic error, 系统误差5 f+ J# l8 _5 X9 c7 Q L8 N
Systematic sampling, 系统抽样& m \8 c5 c/ J x/ v
Tags, 标签
7 \( `, t7 A6 nTail area, 尾部面积! x, L6 Z6 U" Q1 W
Tail length, 尾长5 P7 P: _- p N; H. l- @
Tail weight, 尾重
- L; C8 E3 X! v) j+ _Tangent line, 切线
9 y& D$ D) \4 _- lTarget distribution, 目标分布
4 ~( m) |7 W$ X" A# h3 }Taylor series, 泰勒级数; Y9 M6 d( e2 ^: v% s
Tendency of dispersion, 离散趋势: P u" g" A8 y( B
Testing of hypotheses, 假设检验
* s, K B; A+ S3 Z% jTheoretical frequency, 理论频数$ V4 b" ]' e; x: e }
Time series, 时间序列8 Z- `! w6 z- i1 P* S* r
Tolerance interval, 容忍区间/ g8 G' x" v; I4 W6 T+ K& n- @0 w
Tolerance lower limit, 容忍下限
0 p2 A5 K* s* i+ i* ~: CTolerance upper limit, 容忍上限
/ `- G# F4 B# V. }" sTorsion, 扰率
1 e) ^! D+ ?1 J- JTotal sum of square, 总平方和5 H9 U2 d- H$ s3 g% s* l$ I
Total variation, 总变异
' P0 K' _. ]3 u# i* T3 jTransformation, 转换
1 m+ o" w, P( ]8 U! f2 KTreatment, 处理
# {" Q# f; S$ k9 ^ MTrend, 趋势
( f$ \( Y$ o% M% bTrend of percentage, 百分比趋势: m0 B( c7 N2 ? s% R0 b- h+ u6 v
Trial, 试验
8 ?. j5 @! H) o+ y" |2 VTrial and error method, 试错法
- ~: p( ]( h9 j. d TTuning constant, 细调常数( e. ~+ }* F3 W" v$ m& {9 {- n
Two sided test, 双向检验9 x) n% ^+ }- g4 c) G
Two-stage least squares, 二阶最小平方* t7 `( k+ k8 P% M: P& j) N
Two-stage sampling, 二阶段抽样
$ S5 _3 [# }* V$ P. kTwo-tailed test, 双侧检验" A3 e3 u8 I8 O8 E4 }/ g
Two-way analysis of variance, 双因素方差分析7 _0 A, W5 o% B- P
Two-way table, 双向表% g. D7 P& H3 X7 g, G/ s( V# Z
Type I error, 一类错误/α错误# ~! j' V3 l& U1 ]2 p
Type II error, 二类错误/β错误& \: F8 x2 f5 ^" G% Q/ W
UMVU, 方差一致最小无偏估计简称8 Q5 l" K3 T$ V' x7 S) |6 e
Unbiased estimate, 无偏估计! ^$ J& i5 g3 M4 X- q3 Z8 ^
Unconstrained nonlinear regression , 无约束非线性回归8 Z' K/ A+ W, o( o" }
Unequal subclass number, 不等次级组含量# U/ c8 r0 O! S! y
Ungrouped data, 不分组资料
) g, T! T: H% j9 G) k1 a, \Uniform coordinate, 均匀坐标% X# a% H, Z* b ]
Uniform distribution, 均匀分布' G" _! M/ ]1 j5 m& U9 }( ^/ N/ t
Uniformly minimum variance unbiased estimate, 方差一致最小无偏估计
* `" |' z4 W, w! ^+ f- ]Unit, 单元
' ~: R0 l) d& F& V$ [ JUnordered categories, 无序分类
. l8 k0 h* k+ E a: IUpper limit, 上限
4 h# n6 r$ N2 EUpward rank, 升秩: |! O2 }4 D8 {& \0 G
Vague concept, 模糊概念- I9 e# N- q, O% K8 _+ g4 e
Validity, 有效性2 b# \- M/ o& M: N" v4 w
VARCOMP (Variance component estimation), 方差元素估计
1 S5 C3 a" q( w2 @! KVariability, 变异性
; m0 k( ]; q( _6 |6 n/ UVariable, 变量
0 v0 ?( ^7 s+ e) W) g' M6 tVariance, 方差
( z) f& t/ A# @. X6 ~, ?Variation, 变异# r. `* x+ \& k6 T/ `; X
Varimax orthogonal rotation, 方差最大正交旋转: M& M' v) H7 q: `; K( _" f9 w$ H
Volume of distribution, 容积. R9 [+ H# Y3 m2 r( u( m
W test, W检验( a6 X) K; ?! h0 ?- Q2 q' P- P
Weibull distribution, 威布尔分布
( a1 L* z# a$ L) v7 m+ e+ `, zWeight, 权数5 @3 [. r I) H3 m" b6 v: p
Weighted Chi-square test, 加权卡方检验/Cochran检验, r- F- x1 u3 Y8 _# u
Weighted linear regression method, 加权直线回归
. D# x4 B1 P6 n1 {/ W/ cWeighted mean, 加权平均数
( ^8 r# ], q! u5 O: fWeighted mean square, 加权平均方差8 X$ x2 b' H* A1 q6 B
Weighted sum of square, 加权平方和1 X$ ]' c, K4 Q' u2 ?
Weighting coefficient, 权重系数* j* e8 I, O' n- m* L* p
Weighting method, 加权法 , @: p/ l m0 s L& N
W-estimation, W估计量; ?" \' O+ T5 ^) T
W-estimation of location, 位置W估计量* X5 i9 o' ?( A9 g8 f4 }
Width, 宽度
( ~0 @- r0 _) Y; O2 k4 LWilcoxon paired test, 威斯康星配对法/配对符号秩和检验4 g i6 N6 u1 c) K2 U$ N
Wild point, 野点/狂点
; I9 L+ C. Y. Z* ^; ~7 B WWild value, 野值/狂值5 j- f. D8 @5 g/ y! _& u" J1 j+ T, |
Winsorized mean, 缩尾均值
- \* c% u1 @# e9 P/ I V, G4 X/ B( vWithdraw, 失访 6 q( u$ O3 Q' ?7 r( e
Youden's index, 尤登指数7 F2 U0 ^, i6 X0 {
Z test, Z检验
8 O5 |5 O4 t% \$ w3 U" FZero correlation, 零相关' k) R6 h+ u; v* e/ K
Z-transformation, Z变换 |
本帖子中包含更多资源
您需要 登录 才可以下载或查看,没有账号?注册会员
x
|