高盛面试题:
一根棍子上面有无数只蚂蚁,假设两只蚂蚁碰到之后就会180度调头反向前进,碰到,再调头,直到棍子的某一头,然后掉下来;然后再假设1只蚂蚁从棍子的这头到那头一共需要5分钟,那么问题是:需要多少时间,这根棍子上所有的蚂蚁会掉下来? 当然这题目要解的话,必须是很多东西要理想化的,包括蚂蚁的长度(谁能保证蚂蚁一样长能),速度是否均匀,蚂蚁相撞后动能的损失等。好,假设蚂蚁身长不计,速度均匀等条件下。
“在开始的一瞬间,点1和点N的朝外的蚂蚁想掉下来(同时这2点上朝内的蚂蚁被点2和点N-1的蚂蚁撞头了,调转方向朝外,其他所有点上的蚂蚁由于相互撞头,反转方向),下一瞬间,点1和点N的剩下的2只蚂蚁也掉下去。下一瞬间,点2和点N-1的蚂蚁成为最外层的蚂蚁了,他们需要爬行一点点,依次类推,所有的蚂蚁都如此爬到2边,逐层掉下去,只需2分半”
这种考虑显然不全。这种考虑可以简化为2只蚂蚁都从中开始走。那当然是2分半。 有没有想过如果蚂蚁两边数量不相等,最终简化的结果是一只蚂蚁从三分之一地方开始走呢?
如果要数学论证的话。
1 只蚂蚁是5分钟,
2 --5分钟
3 --5分钟
4 --5分钟
假设 n 只是 5 分钟
那么 n+ 1 只呢?
n + 1 没什么公式可以推导,但根据上面的前提(不计蚂蚁身长)条件,蚂蚁相撞视为穿过,则不难理解 n + 1 也是 5分钟。
所以本人坚持 5 分钟。
在 2010年7月29日 下午1:12,YoungKing <yanckin <at> gmail.com>写道:
貌似高中的物理题,两只蚂蚁相撞后动能交换,其实可以理解为每一只蚂蚁一直在向前爬,从来没有停过。
所以标准答案是5分钟.
页:
[1]